@article{AIHPC_2007__24_1_139_0, author = {Ortega, Jaime and Rosier, Lionel and Takahashi, Tak\'eo}, title = {On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {24}, year = {2007}, pages = {139-165}, doi = {10.1016/j.anihpc.2005.12.004}, mrnumber = {2286562}, zbl = {pre05144941}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2007__24_1_139_0} }
Ortega, Jaime; Rosier, Lionel; Takahashi, Takéo. On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) pp. 139-165. doi : 10.1016/j.anihpc.2005.12.004. http://gdmltest.u-ga.fr/item/AIHPC_2007__24_1_139_0/
[1] Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: an approach in weighted Sobolev spaces, J. Math. Pures Appl. (9) 76 (1) (1997) 55-81. | MR 1429997 | Zbl 0878.35029
, , ,[2] Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (5-6) (2000) 1019-1042. | Zbl 0954.35135
, , ,[3] On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. (9) 75 (2) (1996) 155-188. | MR 1380673 | Zbl 0848.76013
,[4] On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain, SIAM J. Control Optim. 37 (6) (1999) 1874-1896, (electronic). | MR 1720143 | Zbl 0954.76010
,[5] Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal. 146 (1) (1999) 59-71. | MR 1682663 | Zbl 0943.35063
, ,[6] On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations 25 (7-8) (2000) 1399-1413. | Zbl 0953.35118
, ,[7] On the motion of rigid bodies in a viscous fluid, Appl. Math. 47 (6) (2002) 463-484. | MR 1948192 | Zbl 1090.35137
,[8] On the motion of rigid bodies in a viscous compressible fluid, Arch. Rational Mech. Anal. 167 (4) (2003) 281-308. | MR 1981859 | Zbl 1090.76061
,[9] On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Rational Mech. Anal. 148 (1) (1999) 53-88. | MR 1715453 | Zbl 0957.76012
,[10] Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121-144. | Zbl 1046.35084
, ,[11] G.P. Galdi, A.L. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle, Arch. Rational Mech. Anal., July 2004, in press. | Zbl 1081.35076
[12] Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121-144. | Zbl 1046.35084
, ,[13] Introduction à la mécanique des milieux continus, Masson, Paris, 1980. | MR 576236 | Zbl 0465.73001
, ,[14] Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc. Var. 5 (2000) 1-44, (electronic). | Numdam | MR 1745685 | Zbl 0940.93012
,[15] Existence for an unsteady fluid-structure interaction problem, Math. Model. Numer. Anal. (M2AN) 34 (3) (2000) 609-636. | Numdam | Zbl 0969.76017
, ,[16] Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (3) (2000) 219-266. | MR 1781915 | Zbl 0970.35096
, , ,[17] Ordinary Differential Equations, second ed., Birkhäuser, Boston, MA, 1982. | MR 658490
,[18] An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Rational Mech. Anal. 150 (1999) 307-348. | Zbl 0949.35106
,[19] On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl. 9 (2) (1999) 633-648. | MR 1725677 | Zbl 0966.76016
, ,[20] Zur Bewegung einer Kugel in einer zähen Flüssigkeit, Doc. Math. 5 (2000) 15-21, (electronic). | MR 1739269 | Zbl 0936.35125
, ,[21] The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Dinamika Splošn. Sredy 255 (1974) 249-253, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami). | MR 464811
,[22] On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal. 25 (1967) 188-200. | MR 211057 | Zbl 0166.45302
,[23] Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1) (1983) 63-92. | MR 700596 | Zbl 0517.76024
,[24] Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Grundlehren Math. Wiss., Band 181, Springer-Verlag, New York, 1972, (Translated from the French by P. Kenneth). | MR 350177 | Zbl 0223.35039
, ,[25] Mathematical Topics in Fluid Mechanics. Vol. 1, Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, The Clarendon Press, Oxford University Press, New York, 1996, Oxford Sci. Publ. | MR 1422251 | Zbl 0866.76002
,[26] Large time behavior for a simplified N-dimensional model of fluid-solid interaction, Comm. Partial Differential Equations 30 (1-3) (2005) 377-417. | Zbl 1080.35088
, ,[27] Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid, ESAIM: M2AN 39 (1) (2005) 79-108. | Numdam | MR 2136201 | Zbl 1087.35081
, , ,[28] Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal. 161 (2) (2002) 113-147. | MR 1870954 | Zbl 1018.76012
, , ,[29] Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math. 4 (1) (1987) 99-110. | MR 899206 | Zbl 0655.76022
,[30] On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech. 4 (4) (2002) 285-326. | MR 1953783 | Zbl 1022.35041
,[31] Compact sets in the space , Ann. Mat. Pura Appl. (4) 146 (1987) 65-96. | MR 916688 | Zbl 0629.46031
,[32] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton University Press, Princeton, NJ, 1993, (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III). | MR 1232192 | Zbl 0821.42001
,[33] Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 (12) (2003) 1499-1532. | Zbl 1101.35356
,[34] Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech. 6 (1) (2004) 53-77. | MR 2027754 | Zbl 1054.35061
, ,[35] Problèmes mathématiques en plasticité, Gauthier-Villars, Montrouge, 1983. | MR 711964 | Zbl 0547.73026
,[36] Navier-Stokes Equations, Theory and Numerical Analysis, third ed., North-Holland Publishing Co., Amsterdam, 1984, (With an appendix by F. Thomasset). | Zbl 0568.35002
,[37] Large time behavior for a simplified 1D model of fluid-solid interaction, Comm. Partial Differential Equations 28 (9-10) (2003) 1705-1738. | Zbl 1071.74017
, ,