@article{AIHPC_2006__23_6_877_0, author = {Ure\~na, Antonio J.}, title = {Isolated periodic minima are unstable}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {23}, year = {2006}, pages = {877-889}, doi = {10.1016/j.anihpc.2005.09.010}, mrnumber = {2271699}, zbl = {05138724}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2006__23_6_877_0} }
Ureña, Antonio J. Isolated periodic minima are unstable. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) pp. 877-889. doi : 10.1016/j.anihpc.2005.09.010. http://gdmltest.u-ga.fr/item/AIHPC_2006__23_6_877_0/
[1] Calculus of Variations and Partial Differential Equations of the First Order, Chelsea, New York, 1989. | Zbl 0505.49001
,[2] The index of Lyapunov stable fixed points in two dimensions, J. Dynam. Differential Equations 6 (4) (1994) 631-637. | MR 1303278 | Zbl 0811.34018
, ,[3] Ordinary Differential Equations, Birkhäuser, Boston, 1982. | MR 658490 | Zbl 0476.34002
,[4] Selected Chapters in the Calculus of Variations. Lecture Notes by Oliver Knill, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2003. | MR 1988457 | Zbl 1045.37001
,[5] Hyperbolic minimizing geodesics, Trans. Amer. Math. Soc. 352 (7) (2000) 3323-3338. | MR 1661274 | Zbl 0956.37019
,[6] Instability of periodic orbits in the restricted three body problem, in: New Advances in Celestial Mechanics and Hamiltonian Systems, Kluwer/Plenum, New York, 2004, pp. 153-168. | MR 2083011
, ,[7] The number of stable periodic solutions of time-dependent Hamiltonian systems with one degree of freedom, Ergodic Theory Dynam. Systems 18 (4) (1998) 1007-1018. | MR 1645346 | Zbl 0946.34036
,[8] Instability of periodic solutions obtained by minimization, in: The First 60 Years of Nonlinear Analysis of Jean Mawhin, World Scientific, 2004, pp. 189-197. | MR 2128887 | Zbl 02226496
,[9] Lectures on Celestial Mechanics, Translation by Charles I. Kalme, Die Grundlehren der mathematischen Wissenschaften, Band 187, Springer-Verlag, New York, 1971. | MR 502448 | Zbl 0312.70017
, ,