@article{AIHPC_2006__23_6_839_0, author = {Kurta, Vasilii V.}, title = {On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {23}, year = {2006}, pages = {839-848}, doi = {10.1016/j.anihpc.2005.12.001}, mrnumber = {2271696}, zbl = {05138721}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2006__23_6_839_0} }
Kurta, Vasilii V. On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) pp. 839-848. doi : 10.1016/j.anihpc.2005.12.001. http://gdmltest.u-ga.fr/item/AIHPC_2006__23_6_839_0/
[1] On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math. 4 (1955/56) 309-340. | MR 81416 | Zbl 0071.09701
, ,[2] Subharmonic Functions, Academic Press, 1976, (284 p.). | MR 460672 | Zbl 0419.31001
, ,[3] Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, 1993, (363 p.). | MR 1207810 | Zbl 0780.31001
, , ,[4] Introductory Real Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970, (403 p.). | MR 267052 | Zbl 0213.07305
, ,[5] About a Liouville phenomenon, C. R. Math. Acad. Sci. Paris, Ser. I 338 (2004) 19-22. | MR 2038077 | Zbl 1046.35033
,[6] V.V. Kurta, Some problems of qualitative theory for nonlinear second-order equations, Doctoral Dissert., Steklov Math. Inst., Moscow, 1994 (323 p.).
[7] Beiträge zur Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Unendliche Folgen positiver Lösungen, Rend. Circ. Mat. Palermo 33 (1912) 201-211. | JFM 43.0448.01
,[8] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969, (554 p.). | MR 259693 | Zbl 0189.40603
,[9] Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston, MA, 1985, (Advanced Publishing Program, 344 p.). | MR 785568 | Zbl 0645.46031
, ,[10] Capacity and a generalized maximum principle for quasilinear equations of elliptic type, Dokl. Akad. Nauk SSSR 250 (1980) 1318-1320. | MR 564335 | Zbl 0553.35026
,[11] Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion, Mat. Sb. 111 (153) (1980) 42-66. | MR 560463 | Zbl 0428.35036
,[12] On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961) 577-591. | MR 159138 | Zbl 0111.09302
,[13] Mappings with bounded distortion as extremals of integrals of Dirichlet type, Sibirsk. Mat. Zh. 9 (1968) 652-666. | MR 230900 | Zbl 0162.38202
,[14] Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964) 247-302. | MR 170096 | Zbl 0128.09101
,