@article{AIHPC_2006__23_6_829_0, author = {Li, Yongqing and Wang, Zhi-Qiang and Zeng, Jing}, title = {Ground states of nonlinear Schr\"odinger equations with potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {23}, year = {2006}, pages = {829-837}, doi = {10.1016/j.anihpc.2006.01.003}, mrnumber = {2271695}, zbl = {1111.35079}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2006__23_6_829_0} }
Li, Yongqing; Wang, Zhi-Qiang; Zeng, Jing. Ground states of nonlinear Schrödinger equations with potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) pp. 829-837. doi : 10.1016/j.anihpc.2006.01.003. http://gdmltest.u-ga.fr/item/AIHPC_2006__23_6_829_0/
[1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on , Progr. Math., Birkhäuser, in press. | MR 2186962 | Zbl 05013399
[2] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. | MR 370183 | Zbl 0273.49063
, ,[3] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983) 313-345. | MR 695535 | Zbl 0533.35029
, ,[4] On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986) 283-308. | MR 807816 | Zbl 0616.35029
, ,[5] A positive solution for a nonlinear Schrödinger equation on , Indiana Univ. Math. J. 54 (2005) 443-464. | MR 2136816 | Zbl 02182476
, ,[6] The concentration-compactness principle in the calculus of variations. The locally compact case. I & II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109-145, 223-283. | Numdam | Numdam | MR 778970 | Zbl 0704.49004
,[7] Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004) 879-901. | MR 2059151 | Zbl 1140.35399 | Zbl 02130254
, , ,[8] On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4 (2004) 561-572. | MR 2100913 | Zbl 02149279
, ,[9] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291. | MR 1162728 | Zbl 0763.35087
,[10] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162. | MR 454365 | Zbl 0356.35028
,[11] Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2000. | MR 1736116 | Zbl 0746.49010
,[12] Minimax Theorems, Birkhäuser, Boston, 1996. | MR 1400007 | Zbl 0856.49001
,