@article{AIHPC_2006__23_4_499_0, author = {Medville, Kai and Vogelius, Michael S.}, title = {Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {23}, year = {2006}, pages = {499-538}, doi = {10.1016/j.anihpc.2005.02.008}, mrnumber = {2245754}, zbl = {05060815}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2006__23_4_499_0} }
Medville, Kai; Vogelius, Michael S. Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) pp. 499-538. doi : 10.1016/j.anihpc.2005.02.008. http://gdmltest.u-ga.fr/item/AIHPC_2006__23_4_499_0/
[1] Electronic properties of two-dimensional system, Rev. Modern Phys. 54 (1982) 437-621.
, , ,[2] Mathematical Problems from Combustion Theory, Appl. Math. Sci., vol. 83, Springer-Verlag, Berlin, 1989. | MR 1012946 | Zbl 0692.35001
, ,[3] Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994. | MR 1269538 | Zbl 0802.35142
, , ,[4] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223-1253. | MR 1132783 | Zbl 0746.35006
, ,[5] Singular solutions to a nonlinear elliptic boundary value problem originating from corrosion modeling, Quart. Appl. Math. 60 (2002) 675-694. | MR 1939006 | Zbl 1030.35070
, ,[6] J. Davila, A linear elliptic equation with a nonlinear boundary condition, Preprint, Rutgers University, 2001.
[7] Current Distributions and Electrode Shape Changes in Electrochemical Systems, Lecture Notes in Engrg., vol. 75, Springer-Verlag, Berlin, 1992.
,[8] A globalization of the Implicit Function Theorem with applications to nonlinear elliptic equations, Contemp. Math. 289 (2001) 249-272. | MR 1864544 | Zbl 1200.35147 | Zbl 01714734
,[9] Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Math. Appl., vol. 13, Springer-Verlag, Berlin, 1993. | MR 1276944 | Zbl 0797.58005
,[10] On the existence and “blow up” of solutions to a two-dimensional nonlinear boundary-value problem arising in corrosion modelling, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 119-149, Corrigendum to same, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 729-730. | Zbl 1086.35504
, ,[11] K. Medville, Ph.D. Thesis, Rutgers University, 2004.
[12] Blow-up behavior of planar harmonic functions satisfying a certain exponential Neumann boundary condition, SIAM J. Math. Anal. 36 (2005) 1772-1806. | MR 2178221 | Zbl 02206097
, ,[13] Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal. 3 (1990) 173-188. | MR 1061665 | Zbl 0726.35011
, ,[14] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. | MR 845785 | Zbl 0609.58002
,[15] Asymptotic behavior of Stekloff eigenvalues and eigenfunctions, SIAM J. Appl. Math. 20 (1971) 482-490. | MR 306697 | Zbl 0216.38402
,[16] Variational Methods, Ergeb. Math. Grenzgeb., vol. 34, Springer-Verlag, Berlin, 1996. | MR 1411681 | Zbl 0939.49001
,[17] A nonlinear elliptic boundary value problem related to corrosion modeling, Quart. Appl. Math. 56 (1998) 479-505. | MR 1637048 | Zbl 0954.35067
, ,