@article{AIHPC_2006__23_2_237_0,
author = {Alama, Stanley and Bronsard, Lia and Montero, J. Alberto},
title = {On the Ginzburg-Landau model of a superconducting ball in a uniform field},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {23},
year = {2006},
pages = {237-267},
doi = {10.1016/j.anihpc.2005.03.004},
zbl = {05024486},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2006__23_2_237_0}
}
Alama, Stan; Bronsard, Lia; Montero, J. Alberto. On the Ginzburg-Landau model of a superconducting ball in a uniform field. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) pp. 237-267. doi : 10.1016/j.anihpc.2005.03.004. http://gdmltest.u-ga.fr/item/AIHPC_2006__23_2_237_0/
[1] , , Properties of a single vortex solution in a rotation Bose-Einstein condensate, C. R. Acad. Sci. Paris, Ser. I 336 (2003) 713-718. | MR 1988308 | Zbl 1050.82502
[2] G. Alberti, S. Baldo, G. Orlandi, Variational convergence for functionals of the Ginzburg-Landau type, Preprint, 2003. | MR 2177107
[3] , , , Ginzburg-Landau Vortices, Birkhäuser, Basel, 1994. | MR 1269538 | Zbl 0802.35142
[4] , , , Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Func. Anal. 186 (2001) 432-520. | MR 1864830 | Zbl 1077.35047
[5] , , , , Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243-303. | Numdam | MR 1340265 | Zbl 0842.35119
[6] D. Chiron, Boundary problems for the Ginzburg-Landau equation, Preprint, Commun. Cont. Math., in press. | MR 2175092 | Zbl 02239065
[7] , Geometric Measure Theory, Springer-Verlag, New York, 1969. | MR 257325 | Zbl 0176.00801
[8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Revised third printing, Springer-Verlag, 1998. | Zbl 1042.35002
[9] , , The breakdown of superconductivity due to strong fields in the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359. | MR 1664763 | Zbl 0920.35058
[10] , Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984. | MR 775682 | Zbl 0545.49018
[11] , , , Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. (4) CLXXVII (1999) 37-115. | MR 1747627 | Zbl 0963.58003
[12] R.L. Jerrard, More about Bose Einstein condensates, Preprint, 2003.
[13] , , , Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions, Comm. Math. Phys. 249 (3) (2004) 549-577. | MR 2084007 | Zbl 1065.58012
[14] , , The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2) (2002) 151-191. | MR 1890398 | Zbl 1034.35025
[15] , , Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Ser. A 111 (1989) 69-84. | MR 985990 | Zbl 0676.49011
[16] , The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, 1969. | MR 254401 | Zbl 0184.52603
[17] , , Complex Ginzburg-Landau equations in higher dimensions and codimension two area minimizing currents, J. Eur. Math. Soc. 1 (1999) 237-322. | MR 1714735 | Zbl 0939.35056
[18] , Superfluids, Wiley, New York, 1950. | Zbl 0058.23405
[19] , , , Local minimizers with vortices to the Ginzburg-Landau system in three dimensions, CPAM LVII (2004) 0099-0125. | Zbl 1052.49002
[20] , Line vortices in the -Higgs model, ESAIM Control Optim. Calc. Var. 1 (1996) 77-167. | Numdam | MR 1394302 | Zbl 0874.53019
[21] , Ginzburg-Landau minimizers from to and minimal connections, Indiana Univ. Math. J. 50 (4) (2001) 1807-1844. | MR 1889083 | Zbl 1034.58016
[22] , , A product estimate for Ginzburg-Landau and corollaries, J. Funct. Anal. 211 (1) (2004) 219-244. | MR 2054623 | Zbl 1063.35144
[23] , , Ginzburg-Landau minimizers near the first critical field have bounded vorticity, Calc. Var. Partial Differential Equations 17 (1) (2003) 17-28. | MR 1979114 | Zbl 1037.49001
[24] , Local minimizers for the Ginzburg-Landau energy near critical magnetic field I, Comm. Cont. Math. 1 (3) (1999) 295-333. | MR 1707887 | Zbl 0964.49005
[25] , Superconductivity, Gordon and Breach, 1965.
[26] , The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940) 411-444. | JFM 66.0444.01 | MR 3331
[27] , Weakly Differentiable Functions, Springer-Verlag, 1989. | MR 1014685 | Zbl 0692.46022