On global smooth solutions to the 3D Vlasov-Nordström system
Pallard, Christophe
Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006), p. 85-96 / Harvested from Numdam
@article{AIHPC_2006__23_1_85_0,
     author = {Pallard, Christophe},
     title = {On global smooth solutions to the 3D Vlasov-Nordstr\"om system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {23},
     year = {2006},
     pages = {85-96},
     doi = {10.1016/j.anihpc.2005.02.001},
     zbl = {1092.85001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2006__23_1_85_0}
}
Pallard, Christophe. On global smooth solutions to the 3D Vlasov-Nordström system. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) pp. 85-96. doi : 10.1016/j.anihpc.2005.02.001. http://gdmltest.u-ga.fr/item/AIHPC_2006__23_1_85_0/

[1] H. Andréasson, S. Calogero, G. Rein, Global classical solutions to the spherically symmetric Nordström-Vlasov system, Math. Proc. Cambridge Philos. Soc., in press. | MR 2138578 | Zbl 02177509

[2] F. Bouchut, F. Golse, C. Pallard, Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system, Rev. Mat. Iberoamericana, in press. | MR 2124491 | Zbl 1064.35097

[3] Bouchut F., Golse F., Pallard C., Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell System, Arch. Rational Mech. Anal. 170 (2003) 1-15. | MR 2012645 | Zbl 1044.76075

[4] Calogero S., Spherically symmetric steady states of galactic dynamics in scalar gravity, Class. Quantum Grav. 20 (2003) 1729-1741. | MR 1981446 | Zbl 1030.83018

[5] Calogero S., Lee H., The non-relativistic limit of the Nordström-Vlasov system, Comm. Math. Sci. 2 (2004) 19-34. | MR 2082817 | Zbl 1086.83016

[6] Calogero S., Rein G., On classical solutions of the Nordström-Vlasov system, Comm. Partial Differential Equations 28 (2003) 1863-1885. | MR 2015405 | Zbl 1060.35141

[7] S. Calogero, G. Rein, Global weak solutions to the Nordström-Vlasov system, J. Differential Equations, in press. | MR 2085540 | Zbl 1060.35027

[8] Friedrich S., Global small solutions of the Vlasov-Nordström system, math-ph/0407023.

[9] Gelfand I., Shilov G., Generalized Functions. Vol. I, Academic Press, New York, 1964. | MR 166596 | Zbl 0115.33101

[10] Glassey R., Strauss W., Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986) 59-90. | MR 816621 | Zbl 0595.35072

[11] Hawking S., Ellis G., The Large Scale Structure of Space-Time, Cambridge Monographs Math. Phys., Cambridge University Press, 1973. | MR 424186 | Zbl 0265.53054

[12] Hörmander L., The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983. | MR 717035 | Zbl 1028.35001

[13] Klainerman S., Staffilani G., A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal. 1 (2002) 103-125. | MR 1877669 | Zbl 1037.35088

[14] Lee H., Global existence of solutions to the Nordström-Vlasov system in two space dimensions, math-ph/0312014.