@article{AIHPC_2005__22_4_509_0, author = {Wang, Chang You}, title = {A compactness theorem of $n$-harmonic maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {22}, year = {2005}, pages = {509-519}, doi = {10.1016/j.anihpc.2004.10.007}, zbl = {02191852}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2005__22_4_509_0} }
Wang, Chang You. A compactness theorem of $n$-harmonic maps. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) pp. 509-519. doi : 10.1016/j.anihpc.2004.10.007. http://gdmltest.u-ga.fr/item/AIHPC_2005__22_4_509_0/
[1] Weak limits of Palais-Smale sequences for a class of critical functionals, Calc. Var. Partial Differential Equations 1 (3) (1993) 267-310. | MR 1261547 | Zbl 0812.58018
,[2] On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993) 417-443. | MR 1208652 | Zbl 0792.53039
,[3] The weak solutions to the evolution problems of harmonic maps, Math. Z. 201 (1) (1989) 69-74. | MR 990189 | Zbl 0685.58015
,[4] Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) 247-286. | MR 1225511 | Zbl 0864.42009
, , , ,[5] Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991) 101-113. | MR 1143435 | Zbl 0754.58007
,[6] Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 74, 1990. | MR 1034481 | Zbl 0698.35004
,[7] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992. | MR 1158660 | Zbl 0804.28001
, ,[8] spaces of several variables, Acta Math. 129 (1972) 137-193. | MR 447953 | Zbl 0257.46078
, ,[9] Weak convergence of wave maps from (1+2)-dimensional Minkowski space to Riemannian manifolds, Invent. Math. 130 (3) (1997) 589-617. | MR 1483995 | Zbl 0906.35061
, , ,[10] Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (6) (1998) 725-754. | Numdam | MR 1650966 | Zbl 0924.58011
, , ,[11] The blow-up of p-harmonic maps, Manuscripta Math. 81 (1-2) (1993) 89-94. | MR 1247590 | Zbl 0794.58012
,[12] Regularite des applications faiblement harmoniques entre une surface et variete riemannienne, C. R. Acad. Sci. Paris 312 (1991) 591-596. | MR 1101039 | Zbl 0728.35015
,[13] Mappings minimizing the norm of the gradient, Comm. Pure Appl. Math. 40 (5) (1987) 555-588. | MR 896767 | Zbl 0646.49007
, ,[14] Strong convergence of p-harmonic mappings, in: Progress in Partial Differential Equations: The Metz Surveys, 3, Pitman Res. Notes Math. Ser., vol. 314, Longman Sci. Tech., Harlow, 1994, pp. 58-64. | MR 1316190 | Zbl 0833.35038
, , ,[15] Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Math., vol. 150, Cambridge Univ. Press, Cambridge, 2002. | MR 1913803 | Zbl 1010.58010
,[16] m-harmonic flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (4) (1997) 593-631, (1998). | Numdam | MR 1627342 | Zbl 0911.58011
,[17] Quasiregular mappings in even dimensions, Acta Math. 170 (1) (1993) 29-81. | MR 1208562 | Zbl 0785.30008
, ,[18] On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961) 415-426. | MR 131498 | Zbl 0102.04302
, ,[19] The concentration-compactness principle in the calculus of variations: the limit case, I, Rev. Mat. Iberoamericana 1 (1) (1985) 145-201. | MR 834360 | Zbl 0704.49005
,[20] The concentration-compactness principle in the calculus of variations: the limit case, II, Rev. Mat. Iberoamericana 1 (2) (1985) 45-121. | MR 850686 | Zbl 0704.49006
,[21] Convergence of minimizers for the p-Dirichlet integral, Math. Z. 213 (3) (1993) 449-456. | MR 1227492 | Zbl 0798.58022
,[22] The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981) 1-24. | MR 604040 | Zbl 0462.58014
, ,[23] A regularity theory for harmonic maps, J. Differential Geom. 17 (2) (1982) 307-335. | MR 664498 | Zbl 0521.58021
, ,[24] Weak solutions and development of singularities of the σ-model, Comm. Pure Appl. Math. 41 (4) (1988) 459-469. | Zbl 0686.35081
,[25] A compactness theorem for weak solutions of higher-dimensional H-systems, Duke Math. J. 121 (2) (2004) 269-284. | MR 2034643 | Zbl 1054.58008
, ,[26] Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J. 44 (1) (1995) 87-113. | MR 1336433 | Zbl 0826.58014
, ,[27] Connections with -bounds on curvature, Comm. Math. Phys. 83 (1982) 31-42. | MR 648356 | Zbl 0499.58019
,[28] Bubble phenomena of certain Palais-Smale sequences from surfaces to general targets, Houston J. Math. 22 (3) (1996) 559-590. | MR 1417632 | Zbl 0879.58019
,[29] Stationary biharmonic maps from into a Riemannian manifold, Comm. Pure Appl. Math. LVII (2004) 0419-0444. | MR 2026177 | Zbl 1055.58008
,[30] Biharmonic maps from into a Riemannian manifold, Math. Z. 247 (1) (2004) 65-87. | MR 2054520 | Zbl 1064.58016
,