@article{AIHPC_2005__22_4_459_0, author = {Rey, Olivier and Wei, Juncheng}, title = {Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : $N\ge 4$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {22}, year = {2005}, pages = {459-484}, doi = {10.1016/j.anihpc.2004.07.004}, mrnumber = {2145724}, zbl = {02191850}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2005__22_4_459_0} }
Rey, Olivier; Wei, Juncheng. Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : $N\ge 4$. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) pp. 459-484. doi : 10.1016/j.anihpc.2004.07.004. http://gdmltest.u-ga.fr/item/AIHPC_2005__22_4_459_0/
[1] The Neumann problem for elliptic equations with critical nonlinearity, “A tribute in honour of G. Prodi”, Scuola Norm. Sup. Pisa (1991) 9-25. | Zbl 0836.35048
, ,[2] Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math. 456 (1994) 1-18. | MR 1301449 | Zbl 0804.35036
, ,[3] Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993) 318-350. | MR 1218099 | Zbl 0793.35033
, , ,[4] Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman, 1989. | MR 1019828 | Zbl 0676.58021
,[5] Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations 160 (2000) 283-356. | MR 1737000 | Zbl 0990.35016
, ,[6] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297. | MR 982351 | Zbl 0702.35085
, , ,[7] Multiplicity of multiple interior peaks solutions for some singularly perturbed Neumann problems, Intern. Math. Res. Notes 12 (1998) 601-626. | MR 1635869 | Zbl 0916.35037
, ,[8] Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (1999) 241-262. | MR 1696122 | Zbl 0933.35070
, ,[9] Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Partial Differential Equations 16 (2003) 113-145. | MR 1956850 | Zbl 1142.35421 | Zbl 01922405
, , ,[10] On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations 5 (2000) 1397-1420. | MR 1785679 | Zbl 0989.35054
, ,[11] Existence of multipeak solutions for a semilinear elliptic problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations 11 (2000) 143-175. | MR 1782991 | Zbl 0964.35047
, , ,[12] A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972) 30-39.
, ,[13] Multi-peak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996) 739-769. | MR 1408543 | Zbl 0866.35039
,[14] Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math. 546 (2002) 201-235. | MR 1900999 | Zbl 01738273
, ,[15] Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | MR 1721719 | Zbl 1061.35502
, ,[16] C. Gui, J. Wei, On the existence of arbitrary number of bubbles for some semilinear elliptic equations with critical Sobolev exponent, in press.
[17] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000) 522-538. | MR 1758231 | Zbl 0949.35052
, ,[18] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 47-82. | Numdam | MR 1743431 | Zbl 0944.35020
, , ,[19] A criterion for existence of solutions to the supercritical Bahri-Coron's problem, Houston J. Math. 30 (2004) 587-613. | MR 2084920 | Zbl 02115763
, ,[20] Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and quasi-invariant manifold, Duke Math. J. 98 (1999) 59-111. | MR 1687412 | Zbl 0962.35063
,[21] On conformal scalar curvature equation in , Duke Math. J. 57 (1988) 895-924. | MR 975127 | Zbl 0674.53048
, ,[22] On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998) 487-545. | MR 1620632 | Zbl 0898.35004
,[23] On the Diffusion Coefficient of a Semilinear Neumann Problem, Lecture Notes in Math., vol. 1340, Springer, New York, 1986. | MR 974610 | Zbl 0704.35050
, ,[24] Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988) 1-27. | MR 929196 | Zbl 0676.35030
, , ,[25] The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979) 783-795. | MR 539158 | Zbl 0426.35029
,[26] On Neumann problems for semilinear elliptic equations with critical nonlinearity: existence and symmetry of multi-peaked solutions, Comm. Partial Differential Equations 22 (1997) 1493-1527. | MR 1469580 | Zbl 0895.35040
, , ,[27] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18. | MR 1490535 | Zbl 0917.35047
,[28] Singular behavior of least-energy solutions of a semi-linear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992) 1-20. | MR 1174600 | Zbl 0785.35041
, , ,[29] On the shape of least-energy solutions to a semi-linear problem Neumann problem, Comm. Pure Appl. Math. 44 (1991) 819-851. | MR 1115095 | Zbl 0754.35042
, ,[30] Locating the peaks of least-energy solutions to a semi-linear Neumann problem, Duke Math. J. 70 (1993) 247-281. | MR 1219814 | Zbl 0796.35056
, ,[31] The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52. | MR 1040954 | Zbl 0786.35059
,[32] An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math. 1 (1999) 405-449. | MR 1707889 | Zbl 0954.35065
,[33] The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl. 81 (2002) 655-696. | MR 1968337 | Zbl 1066.35033
,[34] O. Rey, J. Wei, Blow-up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, I: , J. Funct. Anal., in press. | Zbl 02105601
[35] Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991) 283-310. | MR 1125221 | Zbl 0766.35017
,[36] The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations 8 (1995) 1533-1554. | MR 1329855 | Zbl 0829.35041
,[37] High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1003-1029. | MR 1361630 | Zbl 0877.35050
,[38] Construction of multi-peaked solution for a nonlinear Neumann problem with critical exponent, J. Nonlinear Anal. 27 (1996) 1281-1306. | MR 1408871 | Zbl 0862.35040
,[39] On the equation in , Rend. Circ. Mat. Palermo 2 (1995) 365-400. | Zbl 0859.35029
, ,[40] On the interior spike layer solutions of singularly perturbed semilinear Neumann problems, Tohoku Math. J. 50 (1998) 159-178. | MR 1622042 | Zbl 0918.35024
,[41] J. Wei, X. Xu, Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in , Pacific J. Math., in press. | MR 2194150 | Zbl 05039946
[42] Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré, Anal. Non Linéaire 15 (1998) 459-482. | Numdam | MR 1632937 | Zbl 0910.35049
, ,[43] On the number of interior multipeak solutions for singularly perturbed Neumann problems, Topol. Methods Nonlinear Anal. 12 (1998) 61-78. | MR 1677747 | Zbl 0929.35056
,[44] Uniqueness results through a priori estimates, I. A three dimensional Neumann problem, J. Differential Equations 154 (1999) 284-317. | MR 1691074 | Zbl 0927.35041
,