@article{AIHPC_2005__22_2_143_0, author = {Malchiodi, A. and Ni, Wei-Ming and Wei, Juncheng}, title = {Multiple clustered layer solutions for semilinear Neumann problems on a ball}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {22}, year = {2005}, pages = {143-163}, doi = {10.1016/j.anihpc.2004.05.003}, mrnumber = {2124160}, zbl = {02165096}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2005__22_2_143_0} }
Malchiodi, A.; Ni, Wei-Ming; Wei, Juncheng. Multiple clustered layer solutions for semilinear Neumann problems on a ball. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) pp. 143-163. doi : 10.1016/j.anihpc.2004.05.003. http://gdmltest.u-ga.fr/item/AIHPC_2005__22_2_143_0/
[1] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Comm. Math. Phys. 235 (2003) 427-466. | MR 1974510 | Zbl 1072.35019
, , ,[2] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J. 53 (2004) 297-329. | MR 2056434 | Zbl 1081.35008
, , ,[3] Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations 160 (2000) 283-356. | MR 1737000 | Zbl 0990.35016
, ,[4] Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999) 1-69. | MR 1667283 | Zbl 01493588
, , ,[5] Uniqueness of the ground state solution of in , Comm. PDE 16 (1991) 1549-1572. | MR 1132797 | Zbl 0753.35034
, ,[6] Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (3) (1999) 883-898. | MR 1736974 | Zbl 0932.35080
, ,[7] Two-bubble solutions in the super-critical Bahri-Coron's problem, Cal. Var. PDE 16 (2) (2003) 113-145. | MR 1956850 | Zbl 01922405
, , ,[8] On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999) 63-79. | MR 1742305 | Zbl 0942.35058
, , ,[9] On the role of distance function in some singularly perturbed problems, Comm. PDE 25 (2000) 155-177. | MR 1737546 | Zbl 0949.35054
, , ,[10] Mutiple peak solutions for some singular perturbation problems, Cal. Var. PDE 10 (2000) 119-134. | MR 1750734 | Zbl 0974.35041
, , ,[11] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999) 241-262. | MR 1696122 | Zbl 0933.35070
, ,[12] Multi-layer solutions for an elliptic problem, J. Differential Equations 194 (2003) 382-405. | MR 2006218 | Zbl 1109.35042
, ,[13] Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | MR 1721719 | Zbl 1061.35502
, ,[14] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math. 52 (2000) 522-538. | MR 1758231 | Zbl 0949.35052
, ,[15] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 249-289. | Numdam | MR 1743431 | Zbl 0944.35020
, , ,[16] Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. PDE 11 (2000) 143-175. | MR 1782991 | Zbl 0964.35047
, , ,[17] On a singularly perturbed equation with Neumann boundary condition, Comm. PDE 23 (1998) 487-545. | MR 1620632 | Zbl 0898.35004
,[18] The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998) 1445-1490. | MR 1639159 | Zbl 0933.35083
, ,[19] Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations 72 (1988) 1-27. | MR 929196 | Zbl 0676.35030
, , ,[20] Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math. 55 (2002) 1507-1508. | MR 1923818 | Zbl 01860559
, ,[21] Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, AIHP Analyse Nonlineaire 20 (1) (2003) 107-143. | Numdam | MR 1958164 | Zbl 01901029
, ,[22] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18. | MR 1490535 | Zbl 0917.35047
,[23] On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991) 819-851. | MR 1115095 | Zbl 0754.35042
, ,[24] Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247-281. | MR 1219814 | Zbl 0796.35056
, ,[25] Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math. 12 (1995) 327-365. | MR 1337211 | Zbl 0843.35006
, ,[26] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J. 94 (1998) 597-618. | MR 1639546 | Zbl 0946.35007
, , ,[27] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995) 731-768. | MR 1342381 | Zbl 0838.35009
, ,[28] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996) 315-333. | MR 1404386 | Zbl 0865.35011
,[29] On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1997) 104-133. | MR 1429093 | Zbl 0873.35007
,[30] On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. 50 (1998) 159-178. | MR 1622042 | Zbl 0918.35024
,[31] On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations 13 (2000) 15-45. | MR 1811947 | Zbl 0970.35034
,[32] Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 459-492. | Numdam | MR 1632937 | Zbl 0910.35049
, ,[33] Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999) 585-606. | MR 1709667 | Zbl 0922.35025
, ,