A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity
Mora, Maria Giovanna ; Müller, Stefan
Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004), p. 271-293 / Harvested from Numdam
@article{AIHPC_2004__21_3_271_0,
     author = {Mora, Maria Giovanna and M\"uller, Stefan},
     title = {A nonlinear model for inextensible rods as a low energy $\Gamma $-limit of three-dimensional nonlinear elasticity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {21},
     year = {2004},
     pages = {271-293},
     doi = {10.1016/j.anihpc.2003.08.001},
     zbl = {1109.74028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2004__21_3_271_0}
}
Mora, Maria Giovanna; Müller, Stefan. A nonlinear model for inextensible rods as a low energy $\Gamma $-limit of three-dimensional nonlinear elasticity. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) pp. 271-293. doi : 10.1016/j.anihpc.2003.08.001. http://gdmltest.u-ga.fr/item/AIHPC_2004__21_3_271_0/

[1] Acerbi E, Buttazzo G, Percivale D, A variational definition for the strain energy of an elastic string, J. Elasticity 25 (1991) 137-148. | MR 1111364 | Zbl 0734.73094

[2] Antman S.S, The Theory of Rods, Handbuch der Physik, vol. VIa, Springer-Verlag, 1972.

[3] Antman S.S, Nonlinear Problems of Elasticity, Springer-Verlag, New York, 1995. | MR 1323857 | Zbl 0820.73002

[4] Cimetière A, Geymonat G, Le Dret H, Raoult A, Tutek Z, Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods, J. Elasticity 19 (1988) 111-161. | MR 937626 | Zbl 0653.73010

[5] Dal Maso G, An Introduction to Γ-convergence, Birkhäuser, Boston, 1993. | Zbl 0816.49001

[6] Friesecke G, James R.D, Müller S, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR 1916989 | Zbl 1021.74024

[7] Friesecke G, James R.D, Müller S, The Föppl von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 201-206. | Zbl 1041.74043

[8] G. Friesecke, R.D. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence, in preparation. | Zbl 1100.74039

[9] Kirchhoff G, Über das Gleichgewicht und die Bewegungen eines unendlich dünnen Stabes, J. Reine Angew. Math. (Crelle) 56 (1859) 285-313. | Zbl 056.1494cj

[10] Mielke A, On Saint-Venant's problem for an elastic strip, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988) 161-181. | MR 963848 | Zbl 0657.73003

[11] Mielke A, Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 102 (1988) 205-229. | MR 944546 | Zbl 0651.73006

[12] M.G. Mora, S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence, Calc. Var., in press. | Zbl 1053.74027

[13] Murat F, Sili A, Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces, C. R. Acad. Sci. Paris, Sér. I Math. 328 (1999) 179-184. | MR 1669058 | Zbl 0929.74010

[14] Murat F, Sili A, Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène, C. R. Acad. Sci. Paris, Sér. I Math. 330 (2000) 745-750. | MR 1763923 | Zbl 0962.74009

[15] Oleinik O.A, Shamaev A.S, Yosifian G.A, Mathematical Problems in Elasticity and Homogenization, North-Holland, 1992. | MR 1195131 | Zbl 0768.73003

[16] O. Pantz, Le modèle de poutre inextensionnelle comme limite de l'élasticité non-linéaire tridimensionnelle, Preprint, 2002.

[17] Villaggio P, Mathematical Models for Elastic Structures, Cambridge University Press, 1997. | MR 1486043 | Zbl 0978.74002