@article{AIHPC_2004__21_3_271_0, author = {Mora, Maria Giovanna and M\"uller, Stefan}, title = {A nonlinear model for inextensible rods as a low energy $\Gamma $-limit of three-dimensional nonlinear elasticity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {21}, year = {2004}, pages = {271-293}, doi = {10.1016/j.anihpc.2003.08.001}, zbl = {1109.74028}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2004__21_3_271_0} }
Mora, Maria Giovanna; Müller, Stefan. A nonlinear model for inextensible rods as a low energy $\Gamma $-limit of three-dimensional nonlinear elasticity. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) pp. 271-293. doi : 10.1016/j.anihpc.2003.08.001. http://gdmltest.u-ga.fr/item/AIHPC_2004__21_3_271_0/
[1] A variational definition for the strain energy of an elastic string, J. Elasticity 25 (1991) 137-148. | MR 1111364 | Zbl 0734.73094
, , ,[2] The Theory of Rods, Handbuch der Physik, vol. VIa, Springer-Verlag, 1972.
,[3] Nonlinear Problems of Elasticity, Springer-Verlag, New York, 1995. | MR 1323857 | Zbl 0820.73002
,[4] Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods, J. Elasticity 19 (1988) 111-161. | MR 937626 | Zbl 0653.73010
, , , , ,[5] An Introduction to Γ-convergence, Birkhäuser, Boston, 1993. | Zbl 0816.49001
,[6] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR 1916989 | Zbl 1021.74024
, , ,[7] The Föppl von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 201-206. | Zbl 1041.74043
, , ,[8] G. Friesecke, R.D. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence, in preparation. | Zbl 1100.74039
[9] Über das Gleichgewicht und die Bewegungen eines unendlich dünnen Stabes, J. Reine Angew. Math. (Crelle) 56 (1859) 285-313. | Zbl 056.1494cj
,[10] On Saint-Venant's problem for an elastic strip, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988) 161-181. | MR 963848 | Zbl 0657.73003
,[11] Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 102 (1988) 205-229. | MR 944546 | Zbl 0651.73006
,[12] M.G. Mora, S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence, Calc. Var., in press. | Zbl 1053.74027
[13] Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces, C. R. Acad. Sci. Paris, Sér. I Math. 328 (1999) 179-184. | MR 1669058 | Zbl 0929.74010
, ,[14] Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène, C. R. Acad. Sci. Paris, Sér. I Math. 330 (2000) 745-750. | MR 1763923 | Zbl 0962.74009
, ,[15] Mathematical Problems in Elasticity and Homogenization, North-Holland, 1992. | MR 1195131 | Zbl 0768.73003
, , ,[16] O. Pantz, Le modèle de poutre inextensionnelle comme limite de l'élasticité non-linéaire tridimensionnelle, Preprint, 2002.
[17] Mathematical Models for Elastic Structures, Cambridge University Press, 1997. | MR 1486043 | Zbl 0978.74002
,