@article{AIHPC_2004__21_2_237_0, author = {Dancer, Edward Norman and Yan, Shusen}, title = {A minimization problem associated with elliptic systems of Fitz-Hugh-Nagumo type}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {21}, year = {2004}, pages = {237-253}, doi = {10.1016/j.anihpc.2003.02.001}, zbl = {1110.35019}, mrnumber = {2047356}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2004__21_2_237_0} }
Dancer, E. N.; Yan, Shusen. A minimization problem associated with elliptic systems of Fitz-Hugh-Nagumo type. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) pp. 237-253. doi : 10.1016/j.anihpc.2003.02.001. http://gdmltest.u-ga.fr/item/AIHPC_2004__21_2_237_0/
[1] On a long-standing conjecture of E. De Giorgi: symmetry in 3d for general nonlinearities and a local minimality property, Acta Appl. Math. 65 (2001) 9-33. | MR 1843784 | Zbl 01657982
, , ,[2] Entire solutions of semilinear elliptic equations in R3 and a conjecture of de Giorgi, J. Amer. Math. Soc. 13 (2000) 725-739. | MR 1775735 | Zbl 0968.35041
, ,[3] Further qualitative properties for elliptic equations in unbounded domains, Ann Scuola Norm. Sup. Pisa C1. Sci. 25 (1997) 69-94. | Numdam | MR 1655510 | Zbl 1079.35513
, , ,[4] Opŕateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert, North-Holland, Amsterdam, 1973. | MR 348562 | Zbl 0252.47055
,[5] A stability analysis for a semilinear parabolic partial differential equation, J. Differential Equations 15 (1974) 522-540. | MR 358042 | Zbl 0271.35043
,[6] On a nonlinear eigenvalue problem occurring in population genetics, Proc. Royal Soc. Edinburgh Sect. A 100 (1985) 85-101. | MR 801846 | Zbl 0569.34021
, ,[7] Existence and multiplicity results for a semilinear eigenvalue problem, Ann. Scuola Norm. Sup. Pisa 14 (1987) 97-121. | Numdam | MR 937538 | Zbl 0662.35045
, ,[8] On the number of positive solutions of weakly non-linear elliptic equations when a parameter is large, Proc. London Math. Soc. 53 (1986) 429-452. | MR 868453 | Zbl 0572.35040
,[9] Convergence problems for functionals and operators, in: Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, pp. 131-188. | MR 533166 | Zbl 0405.49001
,[10] A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal. 17 (1986) 836-849. | MR 846392 | Zbl 0608.35022
, ,[11] On a conjecture of De Giorgi and some related problem, Math. Ann. 311 (1998) 481-491. | MR 1637919 | Zbl 0918.35046
, ,[12] On De Giorgi's conjecture in dimensions 4 and 5, Ann. Math. 157 (2003) 313-334. | MR 1954269 | Zbl 1165.35367 | Zbl 01933160
, ,[13] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. | MR 737190 | Zbl 0562.35001
, ,[14] Standing wave solutions for a system derived from the FitzHugh-Nagumo equation for nerve conduction, SIAM J. Math. Anal. 17 (1986) 74-83. | MR 819214 | Zbl 0593.35043
, ,[15] Stationary wave solutions of a system of reaction-diffusion equations derived from the FitzHugh-Nagumo equations, SIAM J. Appl. Math. 44 (1984) 96-110. | MR 730003 | Zbl 0543.35051
, ,[16] On steady state solutions of a system of reaction-diffusion equations from biology, Nonlinear Anal. 6 (1982) 523-530. | MR 664014 | Zbl 0488.35039
, ,[17] Gradient theory of phase transitions and minimal interface criteria, Arch. Rational Mech. Anal. 98 (1987) 123-142. | MR 866718 | Zbl 0616.76004
,[18] A boundary layer solution to a semilinear elliptic system of FitzHugh-Nagumo type, C. R. Acad. Sci. Paris Sér. I. Math. 329 (1999) 27-32. | MR 1703287 | Zbl 0931.35046
, ,[19] A positive solution on RN to s system of elliptic equations of FitzHugh-Nagumo type, J. Differential Equations 153 (1999) 292-312. | MR 1683624 | Zbl 0929.35042
, ,[20] Existence and uniqueness of solutions on bounded domains to a FitzHugh-Nagumo type elliptic system, Pacific J. Math. 197 (2001) 183-211. | MR 1810215 | Zbl 1066.35069
, ,[21] Solutions with internal jump for an autonomous elliptic system of FitzHugh-Nagumo type, Math. Nachr. 251 (2003) 64-87. | MR 1960805 | Zbl 1118.35009 | Zbl 01902992
, ,[22] The effect of a singular perturbation on nonconvex variational problem, Arch. Rational Mech. Anal. 101 (1988) 202-260. | MR 930124 | Zbl 0647.49021
,