@article{AIHPC_2003__20_6_911_0, author = {Cellina, Arrigo and Ferriero, A.}, title = {Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {20}, year = {2003}, pages = {911-919}, doi = {10.1016/S0294-1449(03)00010-6}, mrnumber = {2008683}, zbl = {1030.49039}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2003__20_6_911_0} }
Cellina, A.; Ferriero, A. Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) pp. 911-919. doi : 10.1016/S0294-1449(03)00010-6. http://gdmltest.u-ga.fr/item/AIHPC_2003__20_6_911_0/
[1] A. Cellina, Reparametrizations and the non-occurrence of the Lavrentiev phenomenon in the autonomous case of the calculus of variations, Preprint, 2001.
[2] A. Cellina, The classical problem of the calculus of variations in the autonomous case: Relaxation and Lipschitzianity of solutions, Trans. Amer. Math. Soc., submitted for publication. | MR 2020039 | Zbl 1064.49027
[3] On the minimum problem for a class of non-coercive functionals, J. Differential Equations 127 (1996) 225-262. | MR 1387265 | Zbl 0856.49010
, , ,[4] Optimization, Theory and Applications, Springer-Verlag, New York, 1983. | MR 688142 | Zbl 0506.49001
,[5] Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 289 (1985) 73-98. | MR 779053 | Zbl 0563.49009
, ,[6] Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. | MR 463994 | Zbl 0322.90046
, ,[7] A general chain rule for derivatives and the change of variable formula for the Lebesgue integral, Amer. Math. Monthly 76 (1969) 514-520. | MR 247011 | Zbl 0175.34401
, ,