@article{AIHPC_2003__20_5_843_0, author = {Felmer, Patricio L. and Quaas, Alexander}, title = {On critical exponents for the Pucci's extremal operators}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {20}, year = {2003}, pages = {843-865}, doi = {10.1016/S0294-1449(03)00011-8}, mrnumber = {1995504}, zbl = {01975936}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2003__20_5_843_0} }
Felmer, Patricio L.; Quaas, Alexander. On critical exponents for the Pucci's extremal operators. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) pp. 843-865. doi : 10.1016/S0294-1449(03)00011-8. http://gdmltest.u-ga.fr/item/AIHPC_2003__20_5_843_0/
[1] Fully Nonlinear Elliptic Equation, Colloquium Publication, 43, American Mathematical Society, 1995. | MR 1351007 | Zbl 0834.35002
, ,[2] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (3) (1989) 271-297. | MR 982351 | Zbl 0702.35085
, , ,[3] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 3 (3) (1991) 615-622. | MR 1121147 | Zbl 0768.35025
, ,[4] A geometric proof of Kwong-Mc Leod uniqueness result, SIAM J. Math. Anal. 24 (1993) 436-443. | MR 1205535 | Zbl 0779.35040
, ,[5] Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972) 81-95. | Zbl 0249.35029
,[6] On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Analyse non lineaire 17 (2) (2000) 219-245. | Numdam | MR 1753094 | Zbl 0956.35035
, ,[7] Uniqueness of the positive solution for singular non-linear boundary value problems, Syst. Sci Math. Sci. 6 (1993) 25-31. | MR 1215914 | Zbl 0789.34025
, ,[8] Structure of positive radial solutions of semilinear elliptic equation, J. Differential Equations 133 (1997) 179-202. | MR 1427849 | Zbl 0871.34023
, ,[9] Symmetry and isolated singularitiesof positive solutions of nonlinear elliptic equations, in: Nonlinear Partial Differential Equations in Engineering and Applied Science (Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979), Lecture Notes in Pure Appl. Math., 54, Dekker, New York, 1980, pp. 255-273. | MR 577096 | Zbl 0444.35038
,[10] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981) 525-598. | MR 615628 | Zbl 0465.35003
, ,[11] Ordinary Differential Equation, Wiley, New York, 1969. | Zbl 0186.40901
,[12] Existence and asymptotic behavior of nodal solution for semilinear elliptic equation, J. Differential Equations 106 (1993) 238-256. | MR 1251853 | Zbl 0791.35039
,[13] The heavy rotating string - a nonlinear eigenvalue problem, Comm. Pure Appl. Math. 8 (1955) 395-408. | MR 71605 | Zbl 0065.17202
,[14] Uniqueness of positive solution of Δu−u+up=0 in RN, Arch. Rational Mech. Anal. 105 (1989) 243-266. | Zbl 0676.35032
,[15] Uniqueness of positive solution of Δu+f(u)=0 in an annulus, Differential Integral Equations 4 (1991) 583-596. | Zbl 0724.34023
, ,[16] Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r)=0, Comm. Pure Appl. Math. 38 (1985) 67-108. | Zbl 0581.35021
, ,[17] Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. 5 (1965) 1408-1411. | Zbl 0141.30202
,