@article{AIHPC_2003__20_1_13_0, author = {Gil, O. and Quir\'os, Fernando}, title = {Boundary layer formation in the transition from the porous media equation to a Hele-Shaw flow}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {20}, year = {2003}, pages = {13-36}, zbl = {1030.35107}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2003__20_1_13_0} }
Gil, O.; Quirós, F. Boundary layer formation in the transition from the porous media equation to a Hele-Shaw flow. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) pp. 13-36. http://gdmltest.u-ga.fr/item/AIHPC_2003__20_1_13_0/
[1] Limit behaviour of focusing solutions to nonlinear diffusions, Comm. Partial Differential Equations 23 (1-2) (1998) 307-332. | MR 1608532 | Zbl 0895.35055
, , ,[2] On the limit of solutions of ut=Δum as m→∞, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale (1989) 1-13.
, , ,[3] The continuous dependence on ϕ of solutions of ut−Δϕ(u)=0, Indiana Univ. Math. J. 30 (1981) 161-177. | Zbl 0482.35012
, ,[4] Some L1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions, Appl. Math. Optim. 17 (3) (1988) 203-224. | MR 922980 | Zbl 0652.35043
, , ,[5] Singular limit of perturbed nonlinear semigroups, Comm. Appl. Nonlinear Anal. 3 (4) (1996) 23-42. | MR 1420283 | Zbl 0870.35014
, ,[6] La limite de la solution de ut=Δpum lorsque m→∞, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1323-1328. | Zbl 0841.35013
, ,[7] Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc. 252 (1979) 99-113. | MR 534112 | Zbl 0425.35060
, ,[8] Asymptotic behaviour of solutions of ut=Δum as m→∞, Indiana Univ. Math. J. 36 (4) (1987) 711-718. | Zbl 0651.35039
, ,[9] On the weak solution of moving boundary problems, J. Inst. Math. Appl. 24 (1979) 43-57. | MR 539372 | Zbl 0416.65073
,[10] The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc. 282 (1) (1984) 183-204. | MR 728709 | Zbl 0621.35102
, ,[11] The mesa problem: diffusion patterns for ut=∇(um∇u) as m→∞, IMA J. Appl. Math. 37 (1986) 147-154. | Zbl 0655.35034
, , , ,[12] A variational inequality approach to Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981) 93-107. | MR 611303 | Zbl 0455.76043
, ,[13] On the mesa problem, J. Math. Anal. Appl. 123 (2) (1987) 564-571. | MR 883709 | Zbl 0631.35046
, ,[14] Asymptotic behavior of solutions of ut=Δφm(u) as m→∞ with inconsistent initial values, in: Analyse Mathématique et applications, Gauthier-Villars, Paris, 1988, pp. 165-180. | Zbl 0676.35041
, ,[15] Convergence of the porous media equation to Hele-Shaw, Nonlinear Anal. 44 (2001) 1111-1131. | MR 1830861 | Zbl 1016.35042
, ,[16] O. Gil, F. Quirós, J.L. Vázquez, Zero specific heat limit and large time asymptotics for the one-phase Stefan problem, Preprint, 2002.
[17] The mesa-limit of the porous medium equation and the Hele-Shaw problem, Differential Integral Equations 15 (2) (2002) 129-146. | MR 1870466 | Zbl 1011.35080
,[18] Schrödinger operators with singular potentials, Israel J. Math. 13 (1972) 133-148. | MR 333833 | Zbl 0246.35025
,[19] Remarks on the quasi-steady one phase Stefan problem, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986) 263-275. | MR 852360 | Zbl 0608.35081
, ,[20] Obstructions to existence in fast-diffusion equations, J. Differential Equations 184 (2002) 348-385. | MR 1929882 | Zbl 1007.35042
, ,[21] A singular limit problem for the porous medium equation, J. Math. Anal. Appl. 140 (2) (1989) 456-466. | MR 1001869 | Zbl 0688.35035
,[22] The penetration of fluid into a porous medium Hele-Shaw cell, Proc. Roy. Soc. A 245 (1958) 312-329. | MR 97227 | Zbl 0086.41603
, ,[23] J.L. Vázquez, A new look at the zero specific heat limit of the Stefan problem, Preprint, 1998.