@article{AIHPC_2002__19_3_281_0,
author = {Alama, Stanley and Berlinsky, A. J. and Bronsard, Lia},
title = {Minimizers of the Lawrence-Doniach energy in the small-coupling limit : finite width samples in a parallel field},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {19},
year = {2002},
pages = {281-312},
zbl = {1011.82032},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2002__19_3_281_0}
}
Alama, S.; Berlinsky, A. J.; Bronsard, L. Minimizers of the Lawrence-Doniach energy in the small-coupling limit : finite width samples in a parallel field. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) pp. 281-312. http://gdmltest.u-ga.fr/item/AIHPC_2002__19_3_281_0/
[1] , , , Periodic vortex lattices for the Lawrence-Doniach model of layered superconductors in a parallel field, preprint, 2000, available on the preprint archive http://xxx.lanl.gov. | MR 1849651
[2] , , Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 233-252. | Numdam | MR 1614571 | Zbl 1004.37043
[3] , , , Symmetry breaking in Hamiltonian systems, J. Differential Equations 67 (1987) 165-184. | MR 879691 | Zbl 0606.58043
[4] , , , On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995) 67-93. | MR 1384837 | Zbl 0814.35032
[5] , , , Ginzburg-Landau Vortices, Birkhauser, Boston, 1994. | MR 1269538 | Zbl 0802.35142
[6] , , Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243-303. | Numdam | MR 1340265 | Zbl 0842.35119
[7] , Magnetic properties of layered superconductors with weak interaction between the layers, Sov. Phys. JETP 37 (1973) 1133-1136.
[8] , , Vortex lattice of highly anisotropic layered superconductors in strong, parallel magnetic fields, Phys. Rev. B44 (1991) 10234-10238.
[9] , , , On the Lawrence-Doniach and anisotropic Ginzburg-Landau models for layered superconductors, SIAM J. Appl. Math. 55 (1995) 156-174. | MR 1313011 | Zbl 0819.35133
[10] , , Viscous flux motion in a Josephson-coupled layer model of high-Tc superconductors, Phys. Rev. B42 (1990) 6209-6216.
[11] , , Local minimizers for the Ginzburg-Landau energy, Math. Z. 225 (1997) 671-684. | MR 1466408 | Zbl 0943.35086
[12] , , The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (1999) 341-359. | MR 1664763 | Zbl 0920.35058
[13] , Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, 1985. | MR 775683 | Zbl 0695.35060
[14] , Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996) 739-769. | MR 1408543 | Zbl 0866.35039
[15] , How anisotropic are the cuprate high Tc superconductors?, Comments Cond. Mat. Phys. 16 (1992) 89-111.
[16] , , , , Dissipation in highly anisotropic superconductors, Phys. Rev. Lett. 64 (1990) 1063-1066.
[17] S. Kuplevakhsky, Microscopic theory of weakly couple superconducting multilayers in an external magnetic field, preprint cond-mat/9812277.
[18] , , Proceedings of the Twelfth International Conference on Low Temperature Physics, E. Kanda (Ed.), Academic Press of Japan, Kyoto, 1971, p. 361.
[19] , , The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998) 1445-1490. | MR 1639159 | Zbl 0933.35083
[20] , , Analysis Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997. | MR 1415616 | Zbl 0873.26002
[21] , , Asymptotics for thin superconducting rings, J. Math. Pures Appl., série 9 77 (1998) 801-820. | MR 1646800 | Zbl 0904.35071
[22] , Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations 4 (1991) 1155-1167. | MR 1133750 | Zbl 0830.35043
[23] , Theory of vortices in weakly-Josephson-coupled layered superconductors, Phys. Rev. B42 (1990) 10172-10177.
[24] , Introduction to Superconductivity, Mc Graw-Hill, New York, 1996.
[25] , On the interior spike solutions for some singular perturbation problems, Proc. Roy. Soc. Edinburgh, Sect. A 128 (1998) 849-874. | MR 1635448 | Zbl 0944.35021