@article{AIHPC_2001__18_4_437_0, author = {Arcoya, David and Boccardo, Lucio and Orsina, Luigi}, title = {Existence of critical points for some noncoercive functionals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {18}, year = {2001}, pages = {437-457}, mrnumber = {1841128}, zbl = {1035.49007}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2001__18_4_437_0} }
Arcoya, David; Boccardo, Lucio; Orsina, Luigi. Existence of critical points for some noncoercive functionals. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) pp. 437-457. http://gdmltest.u-ga.fr/item/AIHPC_2001__18_4_437_0/
[1] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. | MR 370183 | Zbl 0273.49063
, ,[2] Critical points for multiple integrals of calculus of variations, Arch. Rat. Mech. Anal. 134 (1996) 249-274. | MR 1412429 | Zbl 0884.58023
, ,[3] Some remarks on critical point theory for nondifferentiable functionals, NoDEA Nonlinear Differential Equations Appl. 6 (1999) 79-100. | MR 1674782 | Zbl 0923.35049
, ,[4] Arcoya D., Gamez J.L., Orsina L., Peral I., Local existence results for sub-super-critical elliptic problems. Comm. Appl. Anal., to appear. | MR 1864273 | Zbl 1085.35511
[5] Existence and regularity of minima for integral functionals noncoercive in the energy space, Ann. Scuola Norm. Sup. Pisa 25 (1997) 95-130. | Numdam | MR 1655511 | Zbl 1015.49014
, ,[6] A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. 167 (1994) 73-100. | MR 1313551 | Zbl 0828.58006
, ,[7] Teoremi di Semicontinuità nel Calcolo Delle Variazioni, Lecture Notes, Istituto Nazionale di Alta Matematica, Roma, 1968.
,[8] Quasilinear elliptic equations with quadratic growth in unbounded domains, Nonlinear Anal. 10 (1986) 791-804. | MR 851147 | Zbl 0602.35036
, ,[9] Equations aux Dérivées Partielles de Type Elliptique, Dunod, Paris, 1968. | MR 239273 | Zbl 0164.13001
, ,[10] Eigenfunctions of Δu+λf(u)=0, Soviet Math. Dokl. 6 (1965) 1408-1411. | Zbl 0141.30202
,