An example of non-convex minimization and an application to Newton's problem of the body of least resistance
Lachand-Robert, T. ; Peletier, M. A.
Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001), p. 179-198 / Harvested from Numdam
Publié le : 2001-01-01
@article{AIHPC_2001__18_2_179_0,
     author = {Lachand-Robert, Thomas and Peletier, M. A.},
     title = {An example of non-convex minimization and an application to Newton's problem of the body of least resistance},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {18},
     year = {2001},
     pages = {179-198},
     mrnumber = {1808028},
     zbl = {0993.49002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2001__18_2_179_0}
}
Lachand-Robert, T.; Peletier, M. A. An example of non-convex minimization and an application to Newton's problem of the body of least resistance. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) pp. 179-198. http://gdmltest.u-ga.fr/item/AIHPC_2001__18_2_179_0/

[1] Brock F., Ferone V., Kawohl B., A symmetry problem in the calculus of variations, Calc. Var. Partial Differential Equations 4 (1996) 593-599. | MR 1416001 | Zbl 0856.49018

[2] Buttazzo G., Ferone V., Kawohl B., Minimum problems over sets of concave functions and related questions, Math. Nachrichten 173 (1993) 71-89. | MR 1336954 | Zbl 0835.49001

[3] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Studies in Applied Mathematics, CRC Press, 1992. | MR 1158660 | Zbl 0804.28001

[4] Goldstine H.H., A History of the Calculus of Variations from the 17th through the 19th Century, Springer-Verlag, Heidelberg, 1980. | MR 601774 | Zbl 0452.49002

[5] Guasoni P., Problemi di ottimizzazione di forma su classi di insiemi convessi, Tesi di Laurea, Pisa, 1996.

[6] Benoist J., Hiriart-Urruty J.B., What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal. 27 (6) (1996) 1661-1679. | MR 1416513 | Zbl 0876.49018

[7] Lachand-Robert T., Peletier M.A., Extremal points of a functional on the set of convex functions, Proc. Amer. Math. Soc. 127 (1999) 1723-1727. | MR 1646197 | Zbl 0921.49018

[8] Lachand-Robert T., Peletier M.A., Newton's problem of the body of minimal resistance in the class of convex developable functions, in preparation.

[9] Newton I., Philosophiae Naturalis Principia Mathematica, 1686. | Zbl 0050.00201

[10] Reed M., Simon B., Methods of Mathematical Physics, Vol. I, Academic Press, 1980. | MR 751959

[11] Rockafellar R.T., Convex Analysis, Princeton University Press, 1970. | MR 274683 | Zbl 0193.18401

[12] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. | Zbl 0798.52001

[13] Zamfirescu T., Baire category in convexity, Atti Sem. Mat. Fis. Univ. Modena 39 (1991) 139-164. | MR 1111764 | Zbl 0780.52003

[14] Zamfirescu T., Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987) 57-62. | MR 875352 | Zbl 0607.52002