@article{AIHPC_2000__17_6_711_0, author = {Demoulini, Sophia and Stuart, David M. A. and Tzavaras, Athanasios E.}, title = {Construction of entropy solutions for one dimensional elastodynamics via time discretisation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {17}, year = {2000}, pages = {711-731}, mrnumber = {1804652}, zbl = {0988.74031}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2000__17_6_711_0} }
Demoulini, Sophia; Stuart, David M. A.; Tzavaras, Athanasios E. Construction of entropy solutions for one dimensional elastodynamics via time discretisation. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) pp. 711-731. http://gdmltest.u-ga.fr/item/AIHPC_2000__17_6_711_0/
[1] Remarques sur l'existence et la régularité des solutions d'élastostatique non linéaire, in: Berestykci H., Brezis H. (Eds.), Recent Contributions of Nonlinear PDE, Pitman Research Notes in Mathematics 50, Pitman, Boston, 1981, pp. 50- 62. | MR 639745 | Zbl 0466.73012
,[2] Decay of entropy solutions of nonlinear conservation laws, Arch. Rational Mech. Anal. 146 (1999) 95-127. | MR 1718482 | Zbl 0942.35031
, ,[3] Estimates for conservation laws with little viscosity, SIAM J. Math. Anal. 18 (1987) 409-421. | MR 876280 | Zbl 0655.35055
,[4] Young measure solutions for nonlinear evolutionary systems of mixed type, Annales de l'I.H.P., Analyse Non Linéaire 14 (1) (1997) 143-162. | Numdam | MR 1437192 | Zbl 0871.35065
,[5] Weak solutions for a class of nonlinear systems of viscoelasticity, Arch. Rat. Mech. Analysis, to appear. | MR 1808121 | Zbl 0991.74021
,[6] A variational approximation scheme for three dimensional elastodynamics with polyconvex energy, preprint. | Zbl 0985.74024
, , ,[7] Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Analysis 82 (1983) 27-70. | MR 684413 | Zbl 0519.35054
,[8] Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, 1996. | MR 1410987 | Zbl 0860.65075
, ,[9] Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, Berlin, 1997. | MR 1466700 | Zbl 0881.35001
,[10] Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal. 23 (1992) 1-19. | MR 1145159 | Zbl 0757.49014
, ,[11] Shock waves and entropy, in: Zarantonello E.H. (Ed.), Contributions to Nonlinear Functional Analysis, New York, Academic Press, 1971, pp. 603-634. | MR 393870 | Zbl 0268.35014
,[12] Young measures and an application of compensated compactness to one-dimensional nonlinear elastodynamics, Trans. Amer. Math. Soc. 329 (1992) 377- 413. | MR 1049615 | Zbl 0761.35061
,[13] L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures Appl. 60 (1981) 309-322. | Zbl 0471.46020
,[14] Young-measure solutions for diffusion elasticity equations, preprint.
,[ 15] Relaxation semi-linéaire et cinétique des systèmes de lois de conservation, preprint.
,[16] Convergence with physical viscosity for nonlinear elasticity, 1993, (unpublished manuscript).
, ,[17] Global existence and compactness in Lp for the quasi-linear wave equation, Comm. Partial Diff. Eq. 19 (1994) 1829-1877. | MR 1301175 | Zbl 0855.35078
,[18] Compensated compactness and applications to partial differential quations, in: Knops Nonlinear Analysis and Mechanics, IV Heriot-Watt Symposium, Vol. IV, Pitman Research Notes in Mathematics, Pitman, Boston, 1979, pp. 136- 192. | MR 584398 | Zbl 0437.35004
,[19] Materials with internal variables and relaxation to conservation laws, Arch. Rational Mech. Anal. 146 (1999) 129-155. | MR 1718478 | Zbl 0973.74005
,