@article{AIHPC_2000__17_5_617_0, author = {Arioli, Gianni and Gazzola, Filippo and Terracini, Susanna}, title = {Minimization properties of Hill's orbits and applications to some N-body problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {17}, year = {2000}, pages = {617-650}, mrnumber = {1791880}, zbl = {0977.70006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2000__17_5_617_0} }
Arioli, Gianni; Gazzola, Filippo; Terracini, Susanna. Minimization properties of Hill's orbits and applications to some N-body problems. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) pp. 617-650. http://gdmltest.u-ga.fr/item/AIHPC_2000__17_5_617_0/
[1] Le problème des n corps et les distances mutuelles, Invent. Math. 131 (1998) 151-184. | MR 1489897 | Zbl 0919.70005
, ,[2] Critical points and nonlinear variational problems, Mémoire de la Société Mathématique de France 49, 1992. | Numdam | MR 1164129 | Zbl 0766.49006
,[3] Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, 1993. | MR 1267225 | Zbl 0785.34032
, ,[4] Symmetries and noncollision closed orbits for planar N-body-type potentials, Nonlin. Anal. TMA 16 (1991) 587-598. | MR 1094320 | Zbl 0715.70016
, ,[5] Minima de l'intégrale d'action et équilibres relatifs de n corps, C. R. Acad. Sci. Paris Ser. I Math. 326 (1998) 1209-1212 (Erratum: C. R. Acad. Sci. Paris Ser. I Math. 327 (1998) 193). | MR 1642007 | Zbl 0922.70009
, ,[6] A class of periodic solutions of the N-body problem, Celestial Mech. Dynam. Astronom. 46 (2) (1989) 177-186. | MR 1044425 | Zbl 0684.70006
,[7] Periodic solutions for N-body type problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (5) (1990) 477-492. | Numdam | MR 1138534 | Zbl 0723.70010
,[8] Dynamical systems with Newtonian type potentials, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 15 (1988) 467-494. | Numdam | MR 1015804 | Zbl 0692.34050
, ,[9] Dynamical systems with Newtonian type potentials, Atti Acc. Lincei Rend. Fis. Mat. 8 (81) (1987) 271-278. | MR 999819 | Zbl 0667.70010
, , ,[10] Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975) 113-135. | MR 377983 | Zbl 0276.58005
,[11] A minimizing property of Keplerian orbits, Amer. J. Math. 99 (5) (1977) 961-971. | MR 502484 | Zbl 0378.58006
,[12] Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Springer, 1991. | MR 1140006 | Zbl 0743.70006
, ,[ 13] Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, 1973. | MR 442980 | Zbl 0271.70009
,[ 14] Lectures on Celestial Mechanics, Springer, 1971. | MR 502448 | Zbl 0312.70017
, ,[15] Collision solutions of the planar Newtonian three-body problem are not minima of the action functional, Nonlin. Diff. Eq. Appl. (1998).
,[16] Collisionless periodic solutions to some three-body problems, Arch. Rat. Mech. Anal. 120 (4) (1992) 305-325. | MR 1185563 | Zbl 0773.70009
, ,[17] Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlin. Anal. TMA 22 (1) (1994) 45-62. | MR 1256169 | Zbl 0813.70006
, ,