@article{AIHPC_2000__17_5_551_0, author = {Bam\'on, Rodrigo and Flores, Isabel and Del Pino, Manuel}, title = {Ground states of semilinear elliptic equations : a geometric approach}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {17}, year = {2000}, pages = {551-581}, mrnumber = {1791878}, zbl = {0988.35054}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2000__17_5_551_0} }
Bamón, Rodrigo; Flores, Isabel; del Pino, Manuel. Ground states of semilinear elliptic equations : a geometric approach. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) pp. 551-581. http://gdmltest.u-ga.fr/item/AIHPC_2000__17_5_551_0/
[1] A geometric proof of the Kwong-McLeod uniqueness result, SIAM J. Math. Anal. 24 (1993) 436-443. | MR 1205535 | Zbl 0779.35040
, ,[2] Further studies of Emden's and similar differential equations, Quart. J. Math. 2 (1931) 259-288. | Zbl 0003.23502
,[3] Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. | MR 709768 | Zbl 0515.34001
, ,[4] Symmetry properties of positive solutions of nonlinear elliptic equations in RN, Adv. Math. Studies 7A (1981) 369-402. | MR 634248 | Zbl 0469.35052
, , ,[5] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981) 525-598. | MR 615628 | Zbl 0465.35003
, ,[6] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (3) (1989) 271-297. | MR 982351 | Zbl 0702.35085
, , ,[7] Invariant Manifolds, Lecture Notes in Math., Vol. 583, Springer-Verlag, New York, 1977. | MR 501173 | Zbl 0355.58009
, , ,[8] The Melnikov method and elliptic equations with critical exponent, Indiana Univ. Math. J. 43 (1994) 1045-1077. | MR 1305959 | Zbl 0818.35025
, , ,[9] Positive solutions of super-critical elliptic equations and asymptotics, Comm. Partial Differential Eqnuations 18 (1993) 977-1019. | MR 1218526 | Zbl 0793.35029
, , ,[10] A counterexample to the nodal line conjecture and a related semilinear equation, Proc. Amer. Math. 102 (2) (1988) 271-277. | MR 920985 | Zbl 0652.35085
, ,[11] Shock Waves and Reaction Diffusion Equations, 2nd edn., Springer-Verlag, New York, 1994. | MR 1301779 | Zbl 0807.35002
,