On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case
Aftalion, Amandine
Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999), p. 747-772 / Harvested from Numdam
Publié le : 1999-01-01
@article{AIHPC_1999__16_6_747_0,
     author = {Aftalion, Amandine},
     title = {On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {16},
     year = {1999},
     pages = {747-772},
     mrnumber = {1720515},
     zbl = {0940.35183},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1999__16_6_747_0}
}
Aftalion, Amandine. On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) pp. 747-772. http://gdmltest.u-ga.fr/item/AIHPC_1999__16_6_747_0/

[1] A. Aftalion, On the minimizers of the Ginzburg-Landau energy for high kappa: the one-dimensional case, EJAM, Vol. 8, 1997, pp. 331-345. | MR 1471596 | Zbl 0886.34019

[2] P. Baumann, D. Phillips and Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Preprint, 1996.

[3] H. Berestycki, A. Bonnet and S.J. Chapman, A semi-elliptic system arising in the theory of superconductivity, Comm. Appl. Nonlinear Anal., Vol. 1, 3, 1994, pp. 1-21. | MR 1295490 | Zbl 0866.35030

[4] M.S. Berger and Y.Y. Chen, Symmetric Vortices for the Ginzberg-Landau Equations of Superconductivity and the Nonlinear Desingularisation Phenomenon, J. Func. Anal., Vol. 82, 1989, pp. 259-295. | MR 987294 | Zbl 0685.46051

[5] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR 1269538 | Zbl 0802.35142

[6] C. Bolley, Solutions numériques de problèmes de bifurcation, RAIRO Anal. Num., Vol. 14, 1980, pp. 127-147. | Numdam | MR 571311 | Zbl 0439.65087

[7] S.J. Chapman, Nucleation of superconductivity in decreasing fields I, Europ. J. Appl. Math., Vol. 5, 1994, pp. 449-468. | MR 1309734 | Zbl 0820.35124

[8] S.J. Chapman, Nucleation of superconductivity in decreasing fields II, Europ. J. Appl. Math., Vol. 5, 1994, pp. 469-494. | MR 1309734 | Zbl 0820.35124

[9] S.J. Chapman, A mean-field model of superconducting vortices in three dimensions, SIAM J. Appl. Math., Vol. 55, 1995, pp. 1259-1274. | MR 1349309 | Zbl 0836.76014

[10] S.J. Chapman, Motion of vortices in type II superconductors, SIAM J. Appl. Math., Vol. 55, 1995, pp. 1275-1296. | MR 1349310 | Zbl 0836.76015

[11] S.J. Chapman, S.D. Howison and J.R. Ockendon, Macroscopic models of superconductivity, SIAM Review, Vol. 34, 4, 1992, pp. 529-560. | MR 1193011 | Zbl 0769.73068

[12] Y.Y. Chen, Nonsymmetric vortices for the Ginzberg-Landau equations on the bounded domain, J. Math. Phys., Vol. 30, 1989, pp. 1942-1950. | MR 1006155 | Zbl 0697.35117

[13] Q. Du, M.D. Gunzburger and J.S. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Review, Vol. 34, 1, 1992, pp. 54-81. | MR 1156289 | Zbl 0787.65091

[14] C.M. Elliot, H. Matano and Tang Qi, Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity, Europ. J. Appl. Math., Vol. 5, 1994, pp. 431-448. | MR 1309733 | Zbl 0817.35112

[15] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin, 1983. | MR 737190 | Zbl 0562.35001

[16] V.L. Ginzburg and L.D. Landau, On the theory of superconductivity, Soviet Phys. JETP, Vol. 20, 1950, p. 1064.

[17] H.G. Kaper and M.K. Kwong, Uniqueness of non-negative solutions of semilinear elliptic equations, Nonlinear Diffusion Equations and Their Equilibrium States, II, W. M. Ni, L. A. Peletier and J. Serrin (eds.), MSRI Conf. Proc., Springer-Verlag, New York, 1988, pp. 1-17. | MR 956078 | Zbl 0662.35037