@article{AIHPC_1999__16_6_725_0, author = {Liu, Chun-Gen and Long, Yiming}, title = {Hyperbolic characteristics on star-shaped hypersurfaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {16}, year = {1999}, pages = {725-746}, mrnumber = {1720514}, zbl = {0988.37078}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1999__16_6_725_0} }
Liu, Chun-Gen; Long, Yiming. Hyperbolic characteristics on star-shaped hypersurfaces. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) pp. 725-746. http://gdmltest.u-ga.fr/item/AIHPC_1999__16_6_725_0/
[1] Forced vibrations of superquadratic Hamiltonian systems, Acta Mathematica, Vol. 152, 1984, pp. 143-197. | MR 741053 | Zbl 0592.70027
and ,[2] Existence of multiple periodic orbits on starshaped Hamiltonian systems, Comm. pure Appl. Math., Vol. 38, 1985, pp. 253-289. | MR 784474 | Zbl 0569.58027
, , and ,[3] Espaces de Krein et index des systémes hamiltoniens, Ann. Inst. H. Poincaré, Anal. non linéaire, Vol. 7, 1990, pp. 525-560. | Numdam | MR 1079571 | Zbl 0719.58030
,[4] Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, Boston, 1993. | MR 1196690 | Zbl 0779.58005
,[5] Maslov-type index theory for flows and periodic solutions for Hamiltonian equations, Commun. Pure Appl. Math., Vol. 37, 1984, pp. 207-253. | MR 733717 | Zbl 0559.58019
and ,[6] Variational calculus and stability of periodic solutions of a class of Hamiltonian systems, SISSA Ref. (185/92/FM (Oct. 1992)). | MR 1301373
,[7] Les systém hamiltoniens convexes et pairs ne sont pas ergodiques en general, C. R. Acad. Sci. Paris, t. 315, Series I, 1992, pp. 1413-1415. | MR 1199013 | Zbl 0768.70014
, and ,[8] The Iteration Formula of the Maslov-type Index Theory with Applications to Nonlinear Hamiltonian Systems, Trans. Amer. Math. Soc., Vol. 349, 1997, pp. 2619-2661. | MR 1373632 | Zbl 0870.58024
and ,[9] Convex Hamiltonian energy surfaces and their closed trajectories, Comm. Math. Physics, Vol. 113, 1987, pp. 419-467. | MR 925924 | Zbl 0641.58038
and ,[10] | MR 1051888 | Zbl 0707.70003
, Convexity Methods in Hamiltonian Mechanics, Springer, Berlin, 1990.[11] An index theory for periodic solutions of convex Hamiltonian systems, In Nonlinear Funct. Anal. and its Appl. Proc. Symposia in pure Math., Vol. 45-1, 1986, pp. 395-423. | MR 843575 | Zbl 0596.34023
,[12] Une thórie de Morse pour les systèms hamiltoniens convexes, Ann. Inst. Henri poincaté. Anal. Non Linéair, Vol. 1, 1984, pp. 19-78. | Numdam | MR 738494 | Zbl 0537.58018
,[13] Periodic solutions of asymptotically linear Hamiltonian systems, Preprint, 1996, Chinese Ann. of Math. (To appear). | MR 1480013 | Zbl 0884.58081
and ,[14] Location, multiplicity and Morse indices of minimax critical points, J. Reine Angew Math., Vol. 417, 1991, pp. 27-76. | MR 1103905 | Zbl 0736.58011
,[15] Monotonicity of the Maslov-type index and the ω-index theory, Acta of Nankai University (Chinese). to appear.
,[16] An optimal increasing estimate of the Maslov-type indices for iterations, Chinese Sci. Bull, Vol. 42, 1997, pp. 2275-2277 (Chinese edition), Vol. 43, 1998, pp. 1063-1066 (English edition). | MR 1663290 | Zbl 1002.53055
and ,[17] Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Science in China (Scientia Sinica), Vol. Series A.33, 1990, pp. 1409-1419. | MR 1090484 | Zbl 0736.58022
,[18] A Maslov-type theory and asymptotically linear Hamiltonian systems, In Dyna. Syst. and Rel. Topics. K. Shiraaiwa ed. World Sci., 1991, pp. 333-341. | MR 1164899
,[19] The Index Theory of Hamiltonian Systems with Applications, (In Chinese) Science Press, Beijing, 1993.
,[20] Bott formula of the Maslov-type index theory, Nankai Inst. of Math. Nankai Univ. Preprint, 1995, Revised 1996, 1997, Pacific J. Math., Vol. 187, 1999, pp. 113-149. | MR 1674313 | Zbl 0924.58024
,[21] Hyperbolic closed characteristics on compact convex smooth hypersurfaces in R2n, Nankai Inst. of Math. Preprint, 1996, Revised 1997, J. Diff. Equa., Vol. 150, 1998, pp. 227-249. | MR 1658613 | Zbl 0915.58032
,[22] A Maslov-type index theory for symplectic paths, Top. Meth. Nonl. Anal., Vol. 10, 1997, pp. 47-78. | MR 1646611 | Zbl 0977.53075
,[23] Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, Stoc. Proc. Phys. and Geom., S. Albeverio et al. ed. World Sci., 1990, pp. 528-563. | MR 1124230
and ,[24] Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. | MR 467823 | Zbl 0358.70014
,[25] Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. Amer. Math. Soc., Vol. 65, 1986. | MR 845785 | Zbl 0609.58002
,[26] A Proof of the Weinstein conjecture in R2n, Ann. IHP. Analyse nonlinéaire, Vol. 4, 1987, pp. 337-357. | Numdam | MR 917741 | Zbl 0631.58013
,[27] Equivariant Morse theory for starshaped Hamiltonian systems, Trans. Amer. Math. Soc., Vol. 311, 1989, pp. 621-655. | MR 978370 | Zbl 0676.58030
,[28] Subharmonicsfor superquadratic Hamiltonian systems via the iteration method of the Maslov-type index theory, Preprint, 1996.
and ,[29] On the Hypotheses of Rabinowitz' Periodic Orbit Theorems, J. Diff. Equa., Vol. 33, 1979, pp. 353-358. | MR 543704 | Zbl 0388.58020
,[30] periods of periodic solutions and the Lipschitz contant, Proc. Amer. Math. Soc., Vol. 22, 1969, pp. 509-512. | MR 245916 | Zbl 0184.12103
,