@article{AIHPC_1999__16_6_691_0, author = {Mehats, Florian and Roquejoffre, Jean-Michel}, title = {A nonlinear oblique derivative boundary value problem for the heat equation. Part 2 : singular self-similar solutions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {16}, year = {1999}, pages = {691-724}, mrnumber = {1720513}, zbl = {0945.35047}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1999__16_6_691_0} }
Mehats, Florian; Roquejoffre, Jean-Michel. A nonlinear oblique derivative boundary value problem for the heat equation. Part 2 : singular self-similar solutions. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) pp. 691-724. http://gdmltest.u-ga.fr/item/AIHPC_1999__16_6_691_0/
[1] Sobolev spaces, Acad. Press, 1975. | MR 450957 | Zbl 0314.46030
,[2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I and II, Comm. Pure Appl. Math., 12, 1959, pp. 623-727; 17, 1964, pp. 35-92. | MR 162050 | Zbl 0093.10401
, and ,[3] Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Diff. Equations, Vol. 106, No. 1, 1993, pp. 90-106.. | MR 1249178 | Zbl 0786.35051
,[4] Thèse de doctorat de l'École polytechnique, 1994.
,[5] User's guide to viscosity solutions of second order Partial differential equations. Bull. Amer. Soc,. 27, 1992, pp. 1-67. | MR 1118699 | Zbl 0755.35015
, and ,[6] Measure theory and fine properties of functions, Studies in Advanced Math., CRC Press, Ann Arbor, 1992. | MR 1158660 | Zbl 0804.28001
and ,[7] Rapid penetration of a magnetic field into a plasma along an electrode, Sov. J. Plasma Phys., 16, Vol. 1, 1990, pp. 55-57.
, and ,[8] Numerical Methods for Conservation Laws, Lectures in Mathematics, Birkhäuser Verlag, 1990. | MR 1077828 | Zbl 0723.65067
,[9] Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. A.M.S, Vol. 295, 1986, pp. 509-546. | MR 833695 | Zbl 0619.35047
and ,[10] Convergence of MUSCL type methods for scalar conservation laws, C.R. Acad. Sci. Paris, Vol. 311, 1990, Série I, pp. 259-264. | MR 1071622 | Zbl 0712.65082
and ,[11] Thèse de doctorat de l'École polytechnique, 1997.
,[12] A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results, to appear in Ann. IHP,Analyse Non Linéaire. | Numdam | Zbl 0922.35072
and ,