Concentration of low energy extremals
Flucher, M. ; Müller, S.
Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999), p. 269-298 / Harvested from Numdam
@article{AIHPC_1999__16_3_269_0,
     author = {Flucher, M. and M\"uller, S.},
     title = {Concentration of low energy extremals},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {16},
     year = {1999},
     pages = {269-298},
     mrnumber = {1687286},
     zbl = {0938.35042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1999__16_3_269_0}
}
Flucher, M.; Müller, S. Concentration of low energy extremals. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) pp. 269-298. http://gdmltest.u-ga.fr/item/AIHPC_1999__16_3_269_0/

[1] C. Bandle and M. Flucher, Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations ΔU = eU and ΔU = U(n+2)/(n-2). SIAM Rev., Vol. 38, 2, 1996, pp. 191-238. | MR 1391227 | Zbl 0857.35034

[2] C. Dellacherie and P.-A. Meyer, Probabilities and potential. Vol. 29 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1978. | MR 521810 | Zbl 0494.60001

[3] M. Flucher, An asymptotic formula for the minimal capacity among sets of equal area. Calc. Var. Partial Differential Equations, Vol. 1, 1, 1993, pp. 71-86. | MR 1261718 | Zbl 0801.35153

[4] M. Flucher and S. Müller, Radial symmetry and decay rate of variational ground states in the zero mass case. SIAM J. Math. Anal., Vol. 29, 3, 1998, pp. 712-719 | MR 1617704 | Zbl 0908.35005

[5] M. Flucher, A. Garroni and S. Müller, Concentration of low energy extremals: Identification of concentration points. (In preparation).

[6] M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math., Vol. 486, 1997, pp. 165-204. | MR 1450755 | Zbl 0909.35154

[7] M. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems. Math. Z., Vol. 228, 1998, pp. 683-703. | MR 1644436 | Zbl 0921.35024

[8] P.M. Gruber and J.M. Wills Eds. Handbook of convex geometry., Vol. B. North-Holland Publishing Co., Amsterdam, 1993. | MR 1242973 | Zbl 0777.52002

[9] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 1, 2, 1984, pp. 109-145. | Numdam | MR 778970 | Zbl 0541.49009

[10] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana, Vol. 1, 1, 1985, pp. 145-201. | MR 834360 | Zbl 0704.49005

[11] Charles B. Morrey, Multiple integrals in the calculus of variations. Springer-Verlag New York, Inc., New York, 1966. Die Grundlehren der mathematischen Wissenschaften, Band 130. | MR 202511 | Zbl 0142.38701

[12] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 4, 3, 4, 1976, pp. 697-718. | Numdam | MR 601601 | Zbl 0341.35031