Elastic knots in euclidean 3-space
von der Mosel, Heiko
Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999), p. 137-166 / Harvested from Numdam
Publié le : 1999-01-01
@article{AIHPC_1999__16_2_137_0,
     author = {von der Mosel, Heiko},
     title = {Elastic knots in euclidean 3-space},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {16},
     year = {1999},
     pages = {137-166},
     mrnumber = {1674767},
     zbl = {0935.49023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1999__16_2_137_0}
}
von der Mosel, Heiko. Elastic knots in euclidean 3-space. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) pp. 137-166. http://gdmltest.u-ga.fr/item/AIHPC_1999__16_2_137_0/

[1] R. Bryant and P. Griffiths, Reduction of Order for the Constrained Variational Problem and ∫ k2/2 ds, Amer. J. Math., 108, 1986, pp. 525-570 . | MR 844630 | Zbl 0604.58022

[2] U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, Minimal Surfaces I (Boundary Value Problems), II (Boundary Regularity), Grundlehren der math. Wissenschaften, vols. 295-296, Springer, Berlin Heidelberg New York, 1992. | MR 1215267 | Zbl 0777.53012

[3] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattisimo sensu accepti, Bousquet, Lausannae et Genevae, 1744, E 65A. O.O. Ser. I, vol. 24. | Zbl 0788.01072

[4] M.H. Freedman, Zheng-Xu He and Zhenghan Wang, On the Möbius Energy of Knots and Unknots, Annals of Math., 139 no. 1, 1994, pp. 1-50. | MR 1259363 | Zbl 0817.57011

[5] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies 105, Princeton Univ. Press, 1983. | MR 717034 | Zbl 0516.49003

[6] S. Hildebrandt and H.C. Wente, Variational Problems with Obstacles and a Volume Constraint, Math. Z. 135, 1973, pp. 55-68. | MR 365314 | Zbl 0284.49017

[7] R. Irrgang, Ein singuläres bewegungsinvariantes Variationsproblem, Math. Z., 37, 1933, pp. 381-401. | MR 1545401 | Zbl 0007.21301

[8] R. Kusner and J. Sullivan, Möbius Energies for Knots and Links, Surfaces and Submanifolds, Geometric Topology, Proc. Georgia International Topology Conference, 1993, (ed. W.H. Kazez), AMS/IP Studies in Advanced Math., vol. 2, 1996, pp. 570-604. | MR 1470748 | Zbl 0888.57012

[9] J. Langer and D.A. Singer, Knotted Elastic Curves in R3, J. London Math. Soc., (2), 30, 1984, pp. 512-520. | MR 810960 | Zbl 0595.53001

[10] J. Langer and D.A. Singer, Curves in the Hyperbolic Plane and Mean Curvature of Tori in 3-Space, Bull. London Math. Soc., 16, 1984, pp. 531-534. | MR 751827 | Zbl 0554.53014

[11] J. Langer and D.A. Singer, The Total Squared Curvature of Closed Curves, J. Differential Geometry , 20, 1984, pp. 1-22. | MR 772124 | Zbl 0554.53013

[12] J. Langer and D.A. Singer, Curve Straightening and a Minimax Argument for Closed Elastic Curves, Topology, 24, no. 1, 1985, pp. 75-88. | MR 790677 | Zbl 0561.53004

[13] J. O'Hara, Energy of a Knot, Topology, 30, 1991, pp. 241-247. | MR 1098918 | Zbl 0733.57005

[14] A. Polden, Closed Curves of Least Total Curvature, Preprint, SFB 382 Univ. Tübingen, Report Nr. 13 (1995).

[15] J. Radon, Über das Minimum des Integrals ∫s2 s1 F(x, γ, υ, κ)ds, Sitzungsber. Kaiserliche Akad. Wiss., Wien. Math.-nat. Kl., 69, 1910, pp. 1257-1326. | JFM 41.0438.01

[16] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. | MR 209834 | Zbl 0149.09501

[17] E.W. Stredulinsky, Higher Integrability from Reverse Hölder Inequalities, Indiana Univ. Math. J., 29, no. 3, 1980, pp. 407-413. | MR 570689 | Zbl 0442.35064

[18] H. Von Der Mosel, Geometrische Variationsprobleme höherer Ordnung, Bonner Math. Schriften, 293, 1996. | MR 1614881 | Zbl 0888.49031