@article{AIHPC_1999__16_1_107_0,
author = {Alessio, Francesca and Montecchiari, Piero},
title = {Multibump solutions for a class of lagrangian systems slowly oscillating at infinity},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {16},
year = {1999},
pages = {107-135},
mrnumber = {1668564},
zbl = {0919.34044},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_1999__16_1_107_0}
}
Alessio, Francesca; Montecchiari, Piero. Multibump solutions for a class of lagrangian systems slowly oscillating at infinity. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) pp. 107-135. http://gdmltest.u-ga.fr/item/AIHPC_1999__16_1_107_0/
[1] , Homoclinic solutions for second order systems with expansive time dependence, preprint, 1996. | MR 1463919
[2] , and , Semiclassical states of nonlinear Schrödinger equation, Arch. Rat. Mech. Anal., to appear. | Zbl 0896.35042
[3] and , , Homoclinics for second order conservative systems, Partial differential equation and related subjects, Ed. M.Miranda, Pitman Research Notes in Math. Ser., 1992. | MR 1190931 | Zbl 0804.34046
[4] and , Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Padova, Vol. 89,1993, pp. 177-194. | Numdam | MR 1229052 | Zbl 0806.58018
[5] , A Variational Proof of a Sitnikov-like Theorem, Nonlinear Anal. TMA, Vol. 20, 1993, pp. 1303-1318. | MR 1220837 | Zbl 0778.34036
[6] and , A variational approach for homoclinics in almost periodic Hamiltonian systems, Comm. Appl. Nonlinear Analysis, Vol. 2, 1995, pp. 43-57. | MR 1355162 | Zbl 0858.34039
[7] , Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. MeKh., Vol.6, 1980, pp. 98-103. | MR 728558 | Zbl 0549.58019
[8] and , A global condition for quasi random behaviour in a class of conservative systems, preprint, 1995. | MR 1374173
[9] and , Homoclinics orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Analysis, Vol. 1, 1994, pp. 97-129. | MR 1280118 | Zbl 0867.70012
[10] , and , Asymptotic behaviour for a class of multibump solutions to Duffing-like systems, Proc. of the Workshop on Variational and Local Methods in the study of Hamiltonian systems, World Scientific, 1995. | MR 1414014 | Zbl 0951.37013
[11] and , Pseudo-holomorphic curves and the shadowing Lemma, Duke Math. Journ., to appear. | Zbl 0955.37039
[12] , and , A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 288, 1990, pp. 133-160. | MR 1070929 | Zbl 0731.34050
[13] , and , Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems, NODEA, to appear. | Zbl 0878.34045
[14] and , Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., Vol. 4, 1991, pp. 693-727. | MR 1119200 | Zbl 0744.34045
[15] and , Multipeak bound states for nonlinear Schrödinger equations, Ann. IHP Anal. Nonlinéaire, to appear. | Numdam | MR 1614646 | Zbl 0901.35023
[16] , Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. in PDE, Vol. 21, 1996, pp. 787-820. | MR 1391524 | Zbl 0857.35116
[17] and , First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 228, 1990, pp. 483-503. | MR 1079873 | Zbl 0702.34039
[18] , The concentration-compactness principle in the calculus of variations. The locally compact case, part 1., part 2., Ann.IHP Anal. Nonlinéaire, Vol. 1, 1984, pp. 109-145, 223-283. | Numdam | MR 778970 | Zbl 0541.49009
[19] , Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., Vol. 3, 1940, pp. 5-7. | MR 4775 | Zbl 0024.02203
[20] , Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (IV), Vol. 168, 1995, pp. 317-354. | MR 1378249 | Zbl 0849.34035
[21] , and , Multiplicity of homoclinics for time recurrent second order systems, Calculus of Variations, to appear. | Zbl 0886.58014
[22] , and , A global condition for periodic Duffing-like equations, preprint, SISSA, 1995. | MR 1487629 | Zbl 0926.37005
[23] , Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, Vol. 114 A, 1990, pp. 33-38. | MR 1051605 | Zbl 0705.34054
[24] , Multibump solutions for an almost periodically forced singular Hamiltonian system, preprint, 1995. | MR 1348521 | Zbl 0828.34034
[25] , A multibump construction in a degenerate setting, preprint, 1996. | MR 1433175 | Zbl 0876.34055
[26] and , Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., Vol 206, 1991, pp. 473-479. | MR 1095767 | Zbl 0707.58022
[27] , Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., Vol. 209, 1991, pp. 27-42. | MR 1143210 | Zbl 0725.58017
[28] , Looking for the Bernoulli shift, Ann. IHP Anal. Nonlinéaire, Vol. 10, 1993, pp. 561-590. | Numdam | MR 1249107 | Zbl 0803.58013
[29] , and , On the existence of homoclinic solutions for almost periodic second order systems, Ann. IHP Anal. Nonlinéaire, to appear. | Numdam | MR 1420498 | Zbl 0873.58032
[30] , Global bifurcation and chaos, Applied Mathematical Sciences, Springer-Verlag, Vol. 73,1988. | Zbl 0661.58001