@article{AIHPC_1998__15_6_755_0, author = {Sychev, M. A.}, title = {Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {15}, year = {1998}, pages = {755-782}, mrnumber = {1650962}, zbl = {0923.49009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1998__15_6_755_0} }
Sychev, M. Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) pp. 755-782. http://gdmltest.u-ga.fr/item/AIHPC_1998__15_6_755_0/
[1] Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal., Vol. 86, 1984, pp. 125-145. | MR 751305 | Zbl 0565.49010
and ,[2] A Lusin type theorem for gradients, J. Funct. Anal., Vol. 100, 1991, pp. 110-118. | MR 1124295 | Zbl 0752.46025
,[3] A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control and Optimization, Vol. 22, 1984, pp. 570-598. | MR 747970 | Zbl 0549.49005
,[4] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., Vol. 6, 1978, pp. 337-403. | MR 475169 | Zbl 0368.73040
,[5] A version of the fundamental theorem for Young measures,in PDE's and Continuum Models of Phase Transitions, M. Rascle, D. Serre, M. Slemrod, eds., Lecture Notes in Physics 344, Springer-Verlag, 1989, pp. 207-215. | MR 1036070 | Zbl 0991.49500
,[6] W1.p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., Vol. 58, 1984, pp. 225-253. | MR 759098 | Zbl 0549.46019
and ,[7] Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh, Sect A., Vol. 114, 1990, pp. 367-379. | MR 1055554 | Zbl 0716.49011
and ,[8] On minima of functionals of gradient: necessary conditions, Nonlinear Analysis TMA, Vol. 20, 1993, pp. 337-341. | MR 1206422 | Zbl 0784.49021
,[9] On minima of functionals of gradient: sufficient conditions, Nonlinear Analysis TMA, Vol. 20, 1993, pp. 343-347. | MR 1206423 | Zbl 0784.49022
,[10] A version of Olech's lemma in a problem of the Calculus of Variations, SIAM J. Control and Optimization, Vol. 32, 1994, pp. 1114-1127. | MR 1280232 | Zbl 0874.49013
and ,[11] Weak continuity and weak lower semicontinuity of nonlinear problems, Lecture Notes in Math., Vol. 922, Springer-Verlag, 1982. | MR 658130 | Zbl 0484.46041
,[12] Direct methods in the Calculus of Variations, Springer-Verlag, 1989. | MR 990890 | Zbl 0703.49001
,[13] Convex analysis and variational problems, Amsterdam, North-Holland, 1976. | MR 463994 | Zbl 0322.90046
and ,[14] Some remarks on quasiconvexity and strong convergence, Proc. Roy. Soc. Edinburg, Sect. A, Vol. 106, 1987, pp. 53-61. | MR 899940 | Zbl 0628.49011
and ,[15] A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Roy. Soc. Edinburgh. Sect. A, Vol. 124, 1994, pp. 437-471. | MR 1286914 | Zbl 0809.49017
,[16] On the integrability of the jacobian under minimal hypotheses, Arch. Rat. Mech. Anal., Vol. 119, 1992, pp. 129-143. | MR 1176362 | Zbl 0766.46016
and ,[17] Oral communication.
,[18] Characterization of Young measures generated by gradients, Arch. Rat. Mech. Anal., Vol. 115, 1991, pp. 329-365. | MR 1120852 | Zbl 0754.49020
and ,[19] Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal., Vol. 23, 1992, pp. 1-19. | MR 1145159 | Zbl 0757.49014
and ,[20] Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., Vol. 4, No. 1, 1994, pp. 59-90. | MR 1274138 | Zbl 0808.46046
and ,[21] Finite functionals and Young measures generated by gradients of Sobolev functions, MAT-REPORT No. 1994-34, August 1994.
,[22] Convex functions and Orlicz spaces, Groningen, Noordhoff, 1961. | Zbl 0095.09103
and ,[23] A general theorem of selectors, Bull. Acad. Polon. Sci., Vol. XIII, No. 6, 1966, pp. 397-403. | MR 188994 | Zbl 0152.21403
and ,[24] Quasiconvexity and Uniqueness of Equilibrium Solutions in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 86, No. 3. 1984, pp. 233-249. | MR 751508 | Zbl 0589.73017
and ,[25] Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math., Vol. 51, 1985, pp. 1-28. | MR 788671 | Zbl 0573.49010
,[26] Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh., Sect A, Vol. 123, No. 4, 1993, pp. 681-691. | MR 1237608 | Zbl 0813.49017
,[27] Multiple integrals in the Calculus of Variations, Springer-Verlag, 1966. | MR 202511 | Zbl 0142.38701
,[28] Jensen's inequality in the calculus of variations, Differential and Integral Equations, Vol. 7, 1994, pp. 57-72. | MR 1250939 | Zbl 0810.49013
,[29] | MR 365062 | Zbl 0253.46001
, Functional Analysis, Tata Mc Graw-Hill, 1985.[30] Necessary and sufficient conditions in theorems of lower semicontinuity and convergence with a functional, Russ. Acad. Sci. Sb. Math., Vol. 186, 1995, pp. 847-878. | MR 1349015 | Zbl 0835.49009
,[3 1 ] Characterization of weak-strong convergence property of integral functionals by means of their integrands, Preprint 11, 1994, Inst. Math. Siberian Division of Russ. Acad. Sci., Novosibirsk.
,[32] A criterion for continuity of an integral functional on a sequence of functions, Siberian Math. J., Vol. 36, No. 1, 1995, pp. 146-156. | MR 1335221 | Zbl 0856.49009
,[33] Strong convergence results related to strict convexity, Comm. Partial Differential Equations, Vol. 9, 1984, pp. 439-466. | MR 741216 | Zbl 0545.49019
,[34] | MR 259704 | Zbl 0177.37801
, Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, 1969 (reprinted by Chelsea, 1980).[35] Generalized curves and the existence of an attained absolute minimum in the Calculus of Variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III, Vol. 30, 1937, pp. 212-234. | JFM 63.1064.01 | Zbl 0019.21901
,[36] Weakly differentiable functions, Springer-Verlag, New-York, 1989. | MR 1014685 | Zbl 0692.46022
,