@article{AIHPC_1998__15_5_581_0, author = {Zaag, Hatem}, title = {Blow-up results for vector-valued nonlinear heat equations with no gradient structure}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {15}, year = {1998}, pages = {581-622}, mrnumber = {1643389}, zbl = {0902.35050}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1998__15_5_581_0} }
Zaag, Hatem. Blow-up results for vector-valued nonlinear heat equations with no gradient structure. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) pp. 581-622. http://gdmltest.u-ga.fr/item/AIHPC_1998__15_5_581_0/
[1] Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, Vol. 28, 1977, pp. 473-486. | MR 473484 | Zbl 0377.35037
,[2] A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 841-863. | MR 948774 | Zbl 0652.65070
and ,[3] Renormalization group and nonlinear PDEs, Quantum and non-commutative analysis, past present and future perspectives, Kluwer (Boston), 1993. | MR 1276284 | Zbl 0842.35040
and ,[4] Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 1994, pp. 539-575. | MR 1267701 | Zbl 0857.35018
and ,[5] Refined asymptotics for the blowup of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869 | MR 1164066 | Zbl 0784.35010
and ,[6] Modulation theory for the blowup of vector-valued nonlinear heat equations, J. Diff. Equations, Vol. 116, 1995, pp. 119-148. | MR 1317705 | Zbl 0814.35043
and ,[7] On approximate self-similar solutions for some class of quasilinear heat equations with sources, Math. USSR-Sb, Vol. 52, 1985, pp. 155-180. | Zbl 0573.35049
, and ,[8] Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., Vol. 24, 1993, pp. 1254-1276. | MR 1234014 | Zbl 0813.35033
and ,[9] Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. | MR 784476 | Zbl 0585.35051
and ,[10] Characterizing blowup using similarity variables, Indiana Univ. Math. J., Vol. 36, 1987, pp. 1-40. | MR 876989 | Zbl 0601.35052
and ,[11] Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. | MR 1003437 | Zbl 0703.35020
and ,[12] The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II, Internat. Press, Cambridge, 1995, pp. 7-136. | MR 1375255 | Zbl 0867.53030
,[13] Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Vol. 10, 1993, pp. 131-189. | Numdam | MR 1220032 | Zbl 0813.35007
and ,[14] Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral eqns., Vol. 5, 1992, pp. 973-997. | MR 1171974 | Zbl 0767.35036
and ,[15] The complex Ginzburg-Landau equation as a model problem, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 1994), Lectures in Appl. Math., Vol. 31, Amer. Math. Soc., Providence, RI, 1996, pp. 141-190. | MR 1363028 | Zbl 0845.35003
and ,[16] Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u), Arch. Rat. Mech. Anal., Vol. 51, 1973, pp. 371-386. | MR 348216 | Zbl 0278.35052
,[17] Solution of a nonlinear heat equation with arbitrary given blow-up points, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 263-300. | MR 1151268 | Zbl 0785.35012
,[18] Stability of blow-up profile for equation of the type ut = Δu + |u|p-1u, preprint.
and ,[19] Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, 1993, pp. 441-464. | MR 1134760 | Zbl 0803.35015
,[20] Single-point blowup for a semilinear initial value problem, J. Diff. Equations, Vol. 55, 1984, pp. 204-224. | MR 764124 | Zbl 0555.35061
,