Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
Carraro, Laurent ; Duchon, Jean
Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998), p. 431-458 / Harvested from Numdam
Publié le : 1998-01-01
@article{AIHPC_1998__15_4_431_0,
     author = {Carraro, Laurent and Duchon, Jean},
     title = {\'Equation de Burgers avec conditions initiales \`a accroissements ind\'ependants et homog\`enes},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {15},
     year = {1998},
     pages = {431-458},
     mrnumber = {1632909},
     zbl = {0912.35163},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIHPC_1998__15_4_431_0}
}
Carraro, Laurent; Duchon, Jean. Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) pp. 431-458. http://gdmltest.u-ga.fr/item/AIHPC_1998__15_4_431_0/

[1] P. Bertoin, Lévy processes, Cambridge University Press, 1996. | MR 1406564 | Zbl 0861.60003

[2] P. Billingsley, Convergence of probability measures, J. Wiley & Sons, 1968. | Zbl 0172.21201

[3] L. Breiman, Probability, SIAM Classics in Applied Mathematics, 1992. | MR 1163370 | Zbl 0753.60001

[4] I.I. Gihman, A.V. Skorohod, The theory of stochastic processes II, Springer-Verlag, 1975. | MR 375463 | Zbl 0305.60027

[5] E. Hopf, The partial differential equation ut + u ux = μ uxx, Commun. Pure Appl. Mech., Vol. 3, p. 201-230, 1950. | MR 47234 | Zbl 0039.10403

[6] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, 1973. | MR 350216 | Zbl 0268.35062

[7] Z.-S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of brownian type, Commun. Math. Phys., Vol. 148, 1992, p. 623-641. | MR 1181072 | Zbl 0755.60104

[8] Ya G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Commun. Math. Phys., Vol. 148, 1992, p. 601-621. | MR 1181071 | Zbl 0755.60105