@article{AIHPC_1998__15_3_255_0,
author = {Catsigeras, Eleonora and Enrich, Heber},
title = {Homoclinic tangencies near cascades of period doubling bifurcations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {15},
year = {1998},
pages = {255-299},
mrnumber = {1629345},
zbl = {0912.58025},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_1998__15_3_255_0}
}
Catsigeras, Eleonora; Enrich, Heber. Homoclinic tangencies near cascades of period doubling bifurcations. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) pp. 255-299. http://gdmltest.u-ga.fr/item/AIHPC_1998__15_3_255_0/
[1] and , The dynamics of the Hénon map, Annals of Math., Vol. 133, 1991, pp. 73-169. | MR 1087346 | Zbl 0724.58042
[2] , and , Period doubling bifurcations for families of maps on Rn, J. Stat. Phys., Vol. 25, N.1, 1981, pp. 1-14. | Zbl 0521.58041
[3] and , Iterations d'endomorphisms et groupe de rénormalisation, C.R. Acad. Sci. Paris, 287, 1978, pp. 577-588. | MR 512110 | Zbl 0402.54046
[4] , Period doubling for C2+ε mappings, Preprint Univ. Edinburgh, 1992.
[5] and , 1987, A complete proof of the Feigenbaum conjectures, J. Stat. Physics, Vol. 46, N.3/4, 1987, pp. 455-475. | MR 883539 | Zbl 0683.46052
[6] , Quantitative universality for a class of nonlinear transformations, J. Stat. Physics, Vol. 19, 1978, pp. 25-52 | MR 501179 | Zbl 0509.58037
[7] , The universal metric properties of non-linear transformations, J. Stat. Physics, Vol. 21, 1979, pp. 669-706 | MR 555919 | Zbl 0515.58028
[8] , and , Invariant manifolds, Lect. Notes in Math., Vol. 583, Springer. | MR 501173 | Zbl 0355.58009
[9] , A computer assisted proof of the Feigenbaum's conjectures, Bulletin of the A.M.S., Vol. 6, 1982, pp. 427-434. | MR 648529 | Zbl 0487.58017
[10] , Homoclinic bifurcations and cascades of period doubling in higher dimensions, Tese do IMPA., Rio de Janeiro.
[11] and , Abundance of Strange Attractors, Acta Math., Vol. 171, 1993, pp. 1-71. | MR 1237897 | Zbl 0815.58016
[12] , The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. I.H.E.S. Vol. 50, 1979, pp. 101-151. | Numdam | MR 556584 | Zbl 0445.58022
[13] , and , Bifurcations and Stability of Families of Diffeomorphisms, Publ. Math. I.H.E.S, Vol. 57, 1983, pp. 5-71. | Numdam | MR 699057 | Zbl 0518.58031
[14] and , Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, 1982, New York. | MR 669541 | Zbl 0491.58001
[15] and , Hyperbolicity and the creation of homoclinic orbits, Annals of Math., Vol. 125, 1987, pp. 337-374. | MR 881272 | Zbl 0641.58029
[16] and , Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge University Press, 1993. | MR 1237641 | Zbl 0790.58014
[17] and , High dimension diffeomorphisms displaying infinitely many periodic attractors, Annals Math., Vol. 140, 1994, pp. 207-250. | MR 1289496 | Zbl 0817.58004
[18] , Persistence of homoclinic tangencies in higher dimensions, Tese do IMPA, Rio de Janeiro, 1992. [19] , Homoclinic Bifurcations, Proc. Int. Congress of Math., Berkeley, 1986, pp. 1229-1236. [20] , Strange attractors in higher dimensions, Tese do IMPA, Rio de Janeiro, 1991. [21] and , Cascades of period doubling bifurcations: a prerrequisite for horseshoes, Bull. A.M.S., Vol. 9, 1983, pp. 319-322.