@article{AIHPC_1998__15_3_255_0, author = {Catsigeras, Eleonora and Enrich, Heber}, title = {Homoclinic tangencies near cascades of period doubling bifurcations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {15}, year = {1998}, pages = {255-299}, mrnumber = {1629345}, zbl = {0912.58025}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1998__15_3_255_0} }
Catsigeras, Eleonora; Enrich, Heber. Homoclinic tangencies near cascades of period doubling bifurcations. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) pp. 255-299. http://gdmltest.u-ga.fr/item/AIHPC_1998__15_3_255_0/
[1] The dynamics of the Hénon map, Annals of Math., Vol. 133, 1991, pp. 73-169. | MR 1087346 | Zbl 0724.58042
and ,[2] Period doubling bifurcations for families of maps on Rn, J. Stat. Phys., Vol. 25, N.1, 1981, pp. 1-14. | Zbl 0521.58041
, and ,[3] Iterations d'endomorphisms et groupe de rénormalisation, C.R. Acad. Sci. Paris, 287, 1978, pp. 577-588. | MR 512110 | Zbl 0402.54046
and ,[4] Period doubling for C2+ε mappings, Preprint Univ. Edinburgh, 1992.
,[5] 1987, A complete proof of the Feigenbaum conjectures, J. Stat. Physics, Vol. 46, N.3/4, 1987, pp. 455-475. | MR 883539 | Zbl 0683.46052
and ,[6] Quantitative universality for a class of nonlinear transformations, J. Stat. Physics, Vol. 19, 1978, pp. 25-52 | MR 501179 | Zbl 0509.58037
,[7] The universal metric properties of non-linear transformations, J. Stat. Physics, Vol. 21, 1979, pp. 669-706 | MR 555919 | Zbl 0515.58028
,[8] Invariant manifolds, Lect. Notes in Math., Vol. 583, Springer. | MR 501173 | Zbl 0355.58009
, and ,[9] A computer assisted proof of the Feigenbaum's conjectures, Bulletin of the A.M.S., Vol. 6, 1982, pp. 427-434. | MR 648529 | Zbl 0487.58017
,[10] Homoclinic bifurcations and cascades of period doubling in higher dimensions, Tese do IMPA., Rio de Janeiro.
,[11] Abundance of Strange Attractors, Acta Math., Vol. 171, 1993, pp. 1-71. | MR 1237897 | Zbl 0815.58016
and ,[12] The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. I.H.E.S. Vol. 50, 1979, pp. 101-151. | Numdam | MR 556584 | Zbl 0445.58022
,[13] Bifurcations and Stability of Families of Diffeomorphisms, Publ. Math. I.H.E.S, Vol. 57, 1983, pp. 5-71. | Numdam | MR 699057 | Zbl 0518.58031
, and ,[14] Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, 1982, New York. | MR 669541 | Zbl 0491.58001
and ,[15] Hyperbolicity and the creation of homoclinic orbits, Annals of Math., Vol. 125, 1987, pp. 337-374. | MR 881272 | Zbl 0641.58029
and ,[16] Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge University Press, 1993. | MR 1237641 | Zbl 0790.58014
and ,[17] High dimension diffeomorphisms displaying infinitely many periodic attractors, Annals Math., Vol. 140, 1994, pp. 207-250. | MR 1289496 | Zbl 0817.58004
and ,[18] Persistence of homoclinic tangencies in higher dimensions, Tese do IMPA, Rio de Janeiro, 1992. [19] , Homoclinic Bifurcations, Proc. Int. Congress of Math., Berkeley, 1986, pp. 1229-1236. [20] , Strange attractors in higher dimensions, Tese do IMPA, Rio de Janeiro, 1991. [21] and , Cascades of period doubling bifurcations: a prerrequisite for horseshoes, Bull. A.M.S., Vol. 9, 1983, pp. 319-322.
,