The p -harmonic system with measure-valued right hand side
Dolzmann, Georg ; Hungerbühler, Norbert ; Müller, Stefan
Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997), p. 353-364 / Harvested from Numdam
@article{AIHPC_1997__14_3_353_0,
     author = {Dolzmann, Georg and Hungerb\"uhler, Norbert and M\"uller, Stefan},
     title = {The$p$ -harmonic system with measure-valued right hand side},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {14},
     year = {1997},
     pages = {353-364},
     mrnumber = {1450953},
     zbl = {0879.35052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1997__14_3_353_0}
}
Dolzmann, Georg; Hungerbühler, Norbert; Müller, Stefan. The$p$ -harmonic system with measure-valued right hand side. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) pp. 353-364. http://gdmltest.u-ga.fr/item/AIHPC_1997__14_3_353_0/

[1] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. 22, 1995, pp. 241-273. | Numdam | MR 1354907 | Zbl 0866.35037

[2] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal., Vol. 87, 1989, pp. 149-169. | MR 1025884 | Zbl 0707.35060

[3] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures. Comm. Part. Diff. Eqn., Vol. 17, 1992, pp. 641-655. | MR 1163440 | Zbl 0812.35043

[4] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal., Vol. 19, 1992, pp. 581-597. | MR 1183665 | Zbl 0783.35020

[5] Y. Chen, M.-C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into spheres. Math. Z., Vol. 215, 1994, pp. 25-35. | MR 1254812 | Zbl 0793.53049

[6] E. Dibenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math., Vol. 115, 1993, pp. 1107-1134. | MR 1246185 | Zbl 0805.35037

[7] L.C. Evans, Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conf. Ser. in Math., No. 74, Am. Math. Soc., Providence, RI, 1990. | MR 1034481 | Zbl 0698.35004

[8] L.C. Evans and R. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton (etc.), 1992. | MR 1158660 | Zbl 0804.28001

[9] Fuchs ,M. The Green-matrix for elliptic systems which satisfy the Legendre-Hadamard condition. Manuscr. Math., Vol. 46, 1984, pp. 97-115. | MR 735516 | Zbl 0552.35025

[10] M. Fuchs, The Green matrix for strongly elliptic systems of second order with continuous coefficients. Z. Anal. Anwend., Vol. 5 (6), 1986, pp. 507-531. | MR 894243 | Zbl 0634.35023

[11] M. Fuchs, The blow-up of p-harmonic maps. Manuscr. Math., Vol. 81, 1993, pp. 89-94. | MR 1247590 | Zbl 0794.58012

[12] M. Fuchs and J. Reuling, Non-linear elliptic systems involving measure data. Rend. Math. Appl., Vol. 15, 1995, pp. 311-319. | MR 1339247 | Zbl 0838.35133

[13] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations. Manuscr. Math., Vol. 37, 1982, pp. 303-342. | MR 657523 | Zbl 0485.35031

[14] P.L. Lions and F. Murat, Solutions renormalisées d'equations elliptiques (to appear).

[15] S. Müller, Det = det. A remark on the distributional determinant. C.R. Acad. Sci., Paris, Sér. I, Vol. 311, 1990, pp. 13-17. | MR 1062920 | Zbl 0717.46033

[16] F. Murat, Équations elliptiques non linéaires avec second membre L1 ou mesure. Preprint.

[17] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales. Publications du Laboratoire d'Analyse Numérique R93023, 1993.

[181 J.M. Rakotoson, Generalized solutions in a new type of sets for problems with measure data. Differ. Integral Eqn., Vol. 6, 1993, pp. 27-36. | MR 1190163 | Zbl 0780.35047

[19] G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl., IV. Ser., Vol. 120, 1979, pp. 159-184. | MR 551065 | Zbl 0419.35041