Normal form and global solutions for the Klein-Gordon-Zakharov equations
Ozawa, T. ; Tsutaya, K. ; Tsutsumi, Y.
Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995), p. 459-503 / Harvested from Numdam
Publié le : 1995-01-01
@article{AIHPC_1995__12_4_459_0,
     author = {Ozawa, Tohru and Tsutaya, K. and Tsutsumi, Y.},
     title = {Normal form and global solutions for the Klein-Gordon-Zakharov equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {12},
     year = {1995},
     pages = {459-503},
     mrnumber = {1341412},
     zbl = {0842.35092},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1995__12_4_459_0}
}
Ozawa, T.; Tsutaya, K.; Tsutsumi, Y. Normal form and global solutions for the Klein-Gordon-Zakharov equations. Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995) pp. 459-503. http://gdmltest.u-ga.fr/item/AIHPC_1995__12_4_459_0/

[1] A. Bachelot, Problème de Cauchy globale pour des système de Dirac-Klein-Gordon, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 48, 1988, pp. 387-422. | Numdam | MR 969173 | Zbl 0672.35071

[2] J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR 482275 | Zbl 0344.46071

[3] H. Brézis and T. Gallouët, Non linear Schrödinger evolution equations, Nonlinear Analysis, TMA, Vol. 4, 1980, pp. 677-681. | MR 582536 | Zbl 0451.35023

[4] A. Friedman, Partial Differential Equations, Holt Rinehart and Winston, New York, 1969. | MR 445088 | Zbl 0224.35002

[5] V. Georgiev, Global solutions of the system of wave and Klein-Gordon equations, Math. Z., Vol. 203, 1990, pp. 683-698. | MR 1044072 | Zbl 0671.35052

[6] V. Georgiev, Small amplitude solutions of the Maxwell-Dirac equations, Indiana Univ. Math. J., Vol. 40, 1991, pp. 845-883. | MR 1129332 | Zbl 0754.35171

[7] V. Georgiev, Decay estimates for the Klein-Gordon equations, Commun. Part. Diff. Eqs., Vol. 17, 1992, pp. 1111-1139. | MR 1179280 | Zbl 0767.35068

[8] J. Ginibre and G. Velo, Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 43, 1985, pp. 399-442. | Numdam | MR 824083 | Zbl 0595.35089

[9] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 321-332. | MR 784477 | Zbl 0635.35059

[10] S. Klainerman, The null condition and global existence to nonlinear wave equations, Lect. in Appl. Math., Vol. 23, 1986, pp. 293-326. | MR 837683 | Zbl 0599.35105

[11] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., Vol. 185, 1984, pp. 261-270. | MR 731347 | Zbl 0538.35063

[12] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 685-696. | MR 803256 | Zbl 0597.35101

[13] T. Sideris, Decay estimates for the three-dimensional inhomogeneous Klein-Gordon equation and applications, Commun. Part. Diff. Eqs., Vol. 14, 1989, pp. 1421-1455. | MR 1022992 | Zbl 0696.35015

[14] W.A. Strauss, Nonlinear Wave Equations, CBMS Regional Conference Series in Mathematics, no. 73, Amer. Math. Soc., Providence, RI, 1989. | MR 1032250 | Zbl 0714.35003

[15] S.G. Thornhill and D. Ter Haar, Langmuir turbulence and modulational instability, Phys. Reports (Sect. C of Phys. Lett.), Vol. 43, 1978, pp. 43-99.

[16] J.C.H. Simon and E. Taflin, The Cauchy problem for non-linear Klein-Gordon equations, Commun. Math. Phys., Vol. 152, 1993, pp. 433-478. | MR 1213298 | Zbl 0783.35066