Unicité et minimalité des solutions d'une équation de Ginzburg-Landau
Carbou, Gilles
Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995), p. 305-318 / Harvested from Numdam
Publié le : 1995-01-01
@article{AIHPC_1995__12_3_305_0,
     author = {Carbou, Gilles},
     title = {Unicit\'e et minimalit\'e des solutions d'une \'equation de Ginzburg-Landau},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {12},
     year = {1995},
     pages = {305-318},
     mrnumber = {1340266},
     zbl = {0835.35045},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIHPC_1995__12_3_305_0}
}
Carbou, Gilles. Unicité et minimalité des solutions d'une équation de Ginzburg-Landau. Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995) pp. 305-318. http://gdmltest.u-ga.fr/item/AIHPC_1995__12_3_305_0/

[1] F. Béthuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhaüser, 1994. | MR 1269538 | Zbl 0802.35142

[2] H. Brezis, Analyse Fonctionnelle, Masson, 1987. | MR 697382 | Zbl 0511.46001

[3] H. Brezis, F. Merle and T. Rivière, Quantization effects for -Δu = u(1 - |u|2) in R2 , à paraître dansArch. Rat. Mech. Anal. | Zbl 0809.35019

[4] H. Federer, Geometric measure theory, New York, Springer, 1969. | MR 257325 | Zbl 0176.00801

[5] G.W. Gibbons, Topological Defects in Cosmology, Private Communication.

[6] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., Vol. 98, 1987, pp. 123-142. | MR 866718 | Zbl 0616.76004