@article{AIHPC_1995__12_2_155_0, author = {Bandle, Catherine and Marcus, Moshe}, title = {Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {12}, year = {1995}, pages = {155-171}, mrnumber = {1326666}, zbl = {0840.35033}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1995__12_2_155_0} }
Bandle, Catherine; Marcus, Moshe. Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995) pp. 155-171. http://gdmltest.u-ga.fr/item/AIHPC_1995__12_2_155_0/
[1] On the Solutions of Quasilinear Elliptic problems with Boundary Blow-up, Symposia Matematica, Vol. 35, 1994, pp. 93-111. | MR 1297774 | Zbl 0806.35045
and ,[2] C. and M. MARCUS M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. d' Anal. Mathém., Vol. 58, 1992, pp. 9-24. | MR 1226934 | Zbl 0802.35038
[3] A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Rel. Fields, Vol. 90, 1991, pp. 89-115. | MR 1109476 | Zbl 0722.60062
,[4] On solutions of Δu = f(u), Comm. Pure Appl. Math., Vol. 10, 1957, pp. 503-510. | MR 91407 | Zbl 0090.31801
,[5] Partial differential invariant under conformal or projective transformations, Contributions to Analysis (L. Ahlfors ed.), Acad. Press N. Y., 1974, pp. 245-272. | MR 358078 | Zbl 0298.35018
and ,[6] On solutions with blow-up at the boundary for a class of semilinear elliptic equations, Developments in Partial Differential Equations and Applications (Buttazzo et al ed.), Plenum Press, 1992, pp. 65-79. | MR 1213924 | Zbl 0925.35066
,[7] Semilinear elliptic equations with uniform blow-up on the boundary, J. d' Anal. Mathém., Vol. 58, 1992. | MR 1226963 | Zbl 0802.35042
,