@article{AIHPC_1993__10_4_405_0, author = {\v Sver\'ak, Vladim\'\i r}, title = {On Tartar's conjecture}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {10}, year = {1993}, pages = {405-412}, mrnumber = {1246459}, zbl = {0820.35022}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1993__10_4_405_0} }
Šverák, Vladimir. On Tartar's conjecture. Annales de l'I.H.P. Analyse non linéaire, Tome 10 (1993) pp. 405-412. http://gdmltest.u-ga.fr/item/AIHPC_1993__10_4_405_0/
[1] A Version of the Fundamental Theorem for Young Measures, in Partial Differential Equations and Continuum Models of Phase Transitions, M. RASCLE, D. SERRE and M. SLEMROD Eds., pp. 107-215, Springer-Verlag. | MR 1036070 | Zbl 0991.49500
,[2] Sets of Gradients with No Rank-One Connections, J. Math. pures et appl., Vol. 69, 1990, pp. 241-259. | MR 1070479 | Zbl 0644.49011
,[3] Fine Phase Mixtures as Minimizers of Energy, Arch. Rat. Mech. Anal., Vol. 100, 1987, pp. 13-52. | MR 906132 | Zbl 0629.49020
and ,[4] Proposed Experimental Tests of a Theory of Fine Microstructures and the Two-Well Problem, preprint, 1990.
and ,[5] Classical Solutions of Fully Nonlinear Second Order Elliptic Equations, Comm. Pure Appl. Math., Vol. 25, 1982, pp. 333-363. | MR 649348 | Zbl 0469.35022
,[6] Multiple Integrals in the Calculus of Variations, Princeton University Press, 1983. | MR 717034 | Zbl 0516.49003
,[7]
, and (to appear).[8] Elliptic Partial Differential Equations of Second Order, Second Edition, Springer, 1983. | MR 737190 | Zbl 0562.35001
and ,[9] Remarks about equilibrium configurations of crystals, in Symp. Material Instabilities in Continuum Mechanics, pp. 217-242, J. M. BALL Ed., Heriot-Watt, Oxford University Press, 1988. | MR 970527 | Zbl 0850.73037
,[10] Young Measures and the Absence of Fine Microstructures in the α - β Quartz Phase Transition, preprint, 1991.
,[11] Multiple Integrals in the Calculus of Variations, Springer, 1966. | Zbl 0142.38701
,[12] On the Problem of Two Wells (to appear). | MR 1320537 | Zbl 0797.73079
,[13]
(to appear).[14] The Compensated Compactness Method Applied to Systems of Conservations Laws, in Systems of Nonlinear Partial Differential Equations, J. M. BALL Ed., NATO ASI Series, Vol. C111, Reidel, 1982. | MR 725524 | Zbl 0536.35003
,