@article{AIHPC_1993__10_3_313_0,
author = {Filippas, Stathis and Liu, Wenxiong},
title = {On the blowup of multidimensional semilinear heat equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {10},
year = {1993},
pages = {313-344},
mrnumber = {1230711},
zbl = {0815.35039},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_1993__10_3_313_0}
}
Filippas, Stathis; Liu, Wenxiong. On the blowup of multidimensional semilinear heat equations. Annales de l'I.H.P. Analyse non linéaire, Tome 10 (1993) pp. 313-344. http://gdmltest.u-ga.fr/item/AIHPC_1993__10_3_313_0/
[1] and , Final Time Blowup Profiles For Semilinear Parabolic Equations Via Center Manifold Theory, preprint. | MR 1166561
[2] and , A description of self similar blow up for dimensions n ≧ 3, Ann. Inst. H. Poincaré, Anal. Non lineaire, Vol. 5, 1988, pp. 1-22. | Numdam | MR 936887 | Zbl 0726.35018
[3] and , A rescalling algorithm for the numerical calculation of blowing up solutions, Comm. Pure Appl., Math., Vol. 41, 1988, pp. 841-863. | MR 948774 | Zbl 0652.65070
[4] , Stable Blow-up Patterns, J. Diff. Eqns., Vol. 98, 1992, pp. 947-960. | MR 1168971 | Zbl 0770.35010
[5] and , Convergence, asymptotic periodicity, and finite-point blowup in one-dimensional semilinear heat equations, J. Diff. Eqns., Vol. 78, 1989, pp. 160-190. | MR 986159 | Zbl 0692.35013
[6] , Applications of centre manifold theory, Springer-Verlag, New York, 1981. | MR 635782 | Zbl 0464.58001
[7] and , Refined Asymptotic for the blowup of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869. | MR 1164066 | Zbl 0784.35010
[8] , Blow-up of Solutions of Nonlinear Heat and Wave Equations, prcprint.
[9] and , Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. J., Vol. 34, 1985, pp. 425-447. | MR 783924 | Zbl 0576.35068
[10] and , Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Urav. 22, Vol. 7, 1986, pp. 1165-1173. | MR 853803 | Zbl 0632.35028
[11] , and , The space structure near a blowup point for semilinear heat equations: of a formal approch, USSR Comput. Math. and Math. Physics, Vol. 31, 3, 1991, pp. 399-411. | MR 1107061 | Zbl 0747.35014
[12] and , Asymptotically self similar blowup of semilinear heat equations, Comm. Pure Appli. Math., Vol. 38, 1985, pp. 297-319. | Zbl 0585.35051
[13] and , Characterising blow up using similarity variables, Indiana Univ. Math., Vol. 36, 1987, pp. 1-40. | Zbl 0601.35052
[14] and , Nondegeneracy of blowup for semilienear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 297-319.
[15] and , Blow-up Behaviour of One-Dimensional Semilinear Parabolic Equations, Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. | Numdam | Zbl 0813.35007
[16] and , Flat Blow-up in One-Dimensional Semilinear Parabolic Equations, Diff. and Integral Eqns., Vol. 5, 5, 1992, pp. 973-997. | Zbl 0767.35036
[17] and , Blow-up Profiles in One-Dimensional Semilinear Parabolic Equations, Comm. P.D.E's, Vol. 17, 1992, pp. 205-219. | Zbl 0772.35027
[18] , Perturbation Theory for Linear Operators, Springer-Verlag 1980. | Zbl 0435.47001
[19] , and , Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Transl., American Mathematical Society, Providence, R.I., 1968. | Zbl 0174.15403
[20] , Blowup Behavior for semilinear heat equations: multi-dimensional case, IMA preprint 711, Nov. 1990.
[21] , Perturbation theory of eigenvalue problems, Lecture Notes, New York University, 1953.
[22] , Local behavior near blowup points for semilinear parabolic equations, J. Diff. Eqns., to appear. | Zbl 0798.35023
[23] , Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., to appear. | Zbl 0803.35015