@article{AIHPC_1992__9_6_597_0, author = {Terracini, Susanna}, title = {Multiplicity of periodic solution with prescribed energy to singular dynamical systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {9}, year = {1992}, pages = {597-641}, mrnumber = {1198306}, zbl = {0771.34035}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1992__9_6_597_0} }
Terracini, Susanna. Multiplicity of periodic solution with prescribed energy to singular dynamical systems. Annales de l'I.H.P. Analyse non linéaire, Tome 9 (1992) pp. 597-641. http://gdmltest.u-ga.fr/item/AIHPC_1992__9_6_597_0/
[1] Critical Points with Lack of Compactness and Applications to Singular Dynamical Systems, Ann. di Matem. Pura e Appl., Ser. IV, Vol. CIL, 1987, pp. 237-259. | MR 932787 | Zbl 0642.58017
and ,[2] Noncollision Orbits for a Class of Keplerian-Like Potentials, Ann. I.H.P. Analyse non linéaire, Vol. 5, 1988, pp. 287-295. | Numdam | MR 954474 | Zbl 0667.58055
and ,[3] Perturbations of Hamiltonian Systems with Keplerian Potentials, Math. Zeit., Vol. 201, 1989, pp. 227-242. | MR 997224 | Zbl 0653.34032
and ,[4] Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Preprint. | MR 1077264
and ,[5] A Minimax Method for a Class of Hamiltonian Systems with Singular Potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. | MR 987301 | Zbl 0681.70018
and ,[6] Abstract Critical Points Theory and Application to Some Nonlinear Problems with "Strong" Resonance at Infinity, Nonlin. anal. T.M.A., Vol. 7, 1983, pp.981-1012. | MR 713209 | Zbl 0522.58012
, and ,[7] A Geometrical Index for a Group S1 and Some Applications to the Study of Periodic Solutions of O.D.E., Comm. Pure Appl. Math., Vol. 34, 1981, pp. 393-432. | MR 615624 | Zbl 0447.34040
,[8] On the Critical Point Theory for Indefinite Functionals in Presence of Symmetries, Trans. Am. Math. Soc., Vol. 274, 1982, pp. 533-572. | MR 675067 | Zbl 0504.58014
,[9] Periodic Solutions of Prescribed Energy for a Class of Hamiltonian Systems with Singular Potentials, J. Differential equations, Vol. 82, 1989, pp. 60-70. | MR 1023301 | Zbl 0689.34034
and ,[10] On a Class of Dynamical Systems with Singular Potentials, Preprint S.I.S.S.A., Nonlin. Anal. T.M.A. (to appear). | MR 1106369 | Zbl 0744.34039
, and ,[11] Dynamical Systems with Effective-Like Potentials, Nonlin. Anal. T.M.A., Vol. 12, 1988, pp. 209-222. | MR 926213 | Zbl 0648.34050
,[12] Periodic Solutions for a Class of Planar, Singular Dynamical Systems, J. Math. Pures et Appl., T. 68, 1989, pp. 109-119. | MR 985956 | Zbl 0633.34034
,[13] Dynamical Systems with Newtonian Type Potentials, Ann. Scuola Norm. Sup Pisa, Cl. Sci., Vol. 4, 1989 (to appear). | Numdam | MR 1015804 | MR 993807 | Zbl 0692.34050
and ,[14] Periodic Solutions of Dynamical Systems with Newtonian Type Potentials, Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Nat., Vol. 81, 1987, pp. 271-278. | MR 999819 | Zbl 0667.70010
, and ,[15] A minimizing Property of Keplerian Orbits, Amer. J. Math., Vol. 99, 1975, pp. 961-971. | MR 502484 | Zbl 0378.58006
,[16] Conservative Dynamical Systems Involving Strong Forces, Trans. A.M.S., Vol. 204, 1975, pp. 113-135. | MR 377983 | Zbl 0276.58005
,[19] Méthodes topologiques dans les problèmes variaionnels, Hermann, Paris, 1934. | JFM 60.1228.04 | Zbl 0011.02803
and .,[20] Regularization of Kepler's Problem and the Averaging Method on a Maniold, Comm. Pure Appl. Math., Vol. 23, 1970, pp. 609-636. | MR 269931 | Zbl 0193.53803
,[21] An Homotopical Index and Multiplicity of Periodic Solutions to Dynamical Systems with Singular Potentials, J. of Diff. Eq. (to appear). | MR 1170468 | Zbl 0774.34028
,[22] Second Order Conservative Systems with Singular Potentials: Noncollision Periodic Solutions to the Fixed Energy Problem, Preprint, 1990.
,[23]
, Ph. D. Thesis, Preprint S.I.S.S.A., Trieste, 1990.