@article{AIHPC_1992__9_2_187_0, author = {Ambrosetti, Antonio and Coti Zelati, Vittorio}, title = {Closed orbits of fixed energy for a class of N-body problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {9}, year = {1992}, pages = {187-200}, mrnumber = {1160848}, zbl = {0757.70007}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1992__9_2_187_0} }
Ambrosetti, A.; Coti-Zelati, V. Closed orbits of fixed energy for a class of N-body problems. Annales de l'I.H.P. Analyse non linéaire, Tome 9 (1992) pp. 187-200. http://gdmltest.u-ga.fr/item/AIHPC_1992__9_2_187_0/
[1] Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Archive Rat. Mech. Analysis, Vol. 112, 1990, pp. 339-362. | MR 1077264 | Zbl 0737.70008
and ,[2] Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Analysis, Vol. 14, 1973, pp. 349-381. | MR 370183 | Zbl 0273.49063
and ,[3] Solutions of the Three-Body Problem via Critical Points at Infinity, preprint.
and ,[4] ZELATI, Symmetries and Non-Collision Closed Orbits for Planar N-Body Type Problems, J. Nonlin. Analysis TMA (to appear). | Zbl 0715.70016
and[5] Periodic Solutions for N-Body Type Problems, Ann. Inst. H. Poincaré Anal. Nonlinéaire, Vol. 7-5, 1990, pp. 477-492. | Numdam | MR 1138534 | Zbl 0723.70010
,