Closed orbits of fixed energy for a class of N-body problems
Ambrosetti, A. ; Coti-Zelati, V.
Annales de l'I.H.P. Analyse non linéaire, Tome 9 (1992), p. 187-200 / Harvested from Numdam
@article{AIHPC_1992__9_2_187_0,
     author = {Ambrosetti, Antonio and Coti Zelati, Vittorio},
     title = {Closed orbits of fixed energy for a class of N-body problems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {9},
     year = {1992},
     pages = {187-200},
     mrnumber = {1160848},
     zbl = {0757.70007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1992__9_2_187_0}
}
Ambrosetti, A.; Coti-Zelati, V. Closed orbits of fixed energy for a class of N-body problems. Annales de l'I.H.P. Analyse non linéaire, Tome 9 (1992) pp. 187-200. http://gdmltest.u-ga.fr/item/AIHPC_1992__9_2_187_0/

[1] A. Ambrosetti and V. Coti Zelati, Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Archive Rat. Mech. Analysis, Vol. 112, 1990, pp. 339-362. | MR 1077264 | Zbl 0737.70008

[2] A. Ambrosetti and P.H. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Analysis, Vol. 14, 1973, pp. 349-381. | MR 370183 | Zbl 0273.49063

[3] A. Bahri and P.H. Rabinowitz, Solutions of the Three-Body Problem via Critical Points at Infinity, preprint.

[4] U. Bessi and V. Coti ZELATI, Symmetries and Non-Collision Closed Orbits for Planar N-Body Type Problems, J. Nonlin. Analysis TMA (to appear). | Zbl 0715.70016

[5] V. Coti Zelati, Periodic Solutions for N-Body Type Problems, Ann. Inst. H. Poincaré Anal. Nonlinéaire, Vol. 7-5, 1990, pp. 477-492. | Numdam | MR 1138534 | Zbl 0723.70010