@article{AIHPC_1991__8_5_477_0, author = {Felmer, Patricio L.}, title = {Heteroclinic orbits for spatially periodic hamiltonian systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {8}, year = {1991}, pages = {477-497}, mrnumber = {1136353}, zbl = {0749.58021}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1991__8_5_477_0} }
Felmer, P. L. Heteroclinic orbits for spatially periodic hamiltonian systems. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) pp. 477-497. http://gdmltest.u-ga.fr/item/AIHPC_1991__8_5_477_0/
[1] Forced Oscillations for the Triple Pendulum, E.T.H. Zürich Report, August 1988.
, and ,[2] Multiple Solutions for Lagrangean Systems in Tn, Nonlinear Analysis T.M.A. (to appear). | Zbl 0717.58050
,[3] Periodic Solutions of Spatially Periodic Hamiltonian Systems, Journal of Differential Equations (to appear). | MR 1168976 | Zbl 0763.34032
,[4] Multiple Solutions of the Forced Double Pendulum Equation, Preprint.
and ,[5] A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Preprint, S.I.S.S.A., 1988.
and ,[6] First Order Elliptic Systems and the Existence of Homoclinic Orbits in Hamiltonian System, Preprint.
and ,[7] Minimax Methods in Critical Point Theory with Applications to Differential Equations", C.B.M.S. Regional Conference Series in Mathematics, 65, A.M.S., Providence, 1986. | MR 845785 | Zbl 0609.58002
, "[8] Periodic and Heteroclinic Orbits for a Periodic Hamiltonian System, Analyse Nonlineare (to appear). | Numdam | MR 1030854 | Zbl 0701.58023
,[9] Homoclinic Orbits for a Class of Hamiltonian Systems, Preprint. | MR 1051605
,[10] Homoclinic Orbits for a Singular Second Order Hamiltonian System, Preprint, 1989.
,