On the static and dynamic study of oscillations for some nonlinear hyperbolic systems of conservation laws
Rascle, Michel
Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991), p. 333-350 / Harvested from Numdam
Publié le : 1991-01-01
@article{AIHPC_1991__8_3-4_333_0,
     author = {Rascle, Michel},
     title = {On the static and dynamic study of oscillations for some nonlinear hyperbolic systems of conservation laws},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {8},
     year = {1991},
     pages = {333-350},
     mrnumber = {1127930},
     zbl = {0768.35060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1991__8_3-4_333_0}
}
Rascle, Michel. On the static and dynamic study of oscillations for some nonlinear hyperbolic systems of conservation laws. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) pp. 333-350. http://gdmltest.u-ga.fr/item/AIHPC_1991__8_3-4_333_0/

[1] J.M. Ball, A Version of the Fundamental Theorem for Young Measures, in PDEs and Continuum Models of Phase Transitions, M. RASCLE, D. SERRE and M. SLEMROD Ed., Springer Lecture Notes in Physics, No. 344, pp. 207-216. | MR 1036070 | Zbl 0991.49500

[2] Chen Gui-Qiang, Propagation and Cancellation of Oscillations for Hyperbolic Systems of Conservation laws, Preprint, 1990. | MR 1077915 | Zbl 0727.35085

[3] C.M. Dafermos, Heriot Watt Symposium, 1979, R. J. KNOPS, Ed., Res. Notes in Math., Nonlinear Analysis and Mechanics, Vol. 1, Pitman. | MR 481581

[4] R.J. Diperna, Convergence of Approximate Solutions to Conservation Laws, Arch. Rat. Mech. Anal., 8, Vol. 82, 1983, pp. 27-70. | MR 684413 | Zbl 0519.35054

[5] R.J. Diperna, Measure-Valued Solutions to Conservation Laws, Arch. Rat. Mech. Anal., Vol. 88, 1985, pp. 223-270. | MR 775191 | Zbl 0616.35055

[6] R.J. Diperna, Compensated Compactness and General Systems of Conservation Laws. | Zbl 0606.35052

[7] P. Gerard, Compacité par compensation et régularité 2-microlocale. Preprint. | Zbl 0707.35032

[8] F. Murat, L'injection du cône positif de H- dans W-1, q est compacte pour tout q < 2, J. Math. Pures et Appl., T. 60, 1981, pp. 309-322. | Zbl 0471.46020

[9] M. Rascle, Perturbations par viscosité de certains systèmes hyperboliques non linéaires, Thèse, Lyon, 1983.

[10] M. Rascle ,On the Convergence of the Viscosity Method for the System of Nonlinear 1-D Elasticity, in A.M.S. Lectures in Applied Math., Vol. 23, 1986, pp. 359-377. | MR 837686 | Zbl 0596.35083

[11] D. Serre, La compacité par compensation pour les systèmes non linéaires de deux équations à une dimension d'espace, J. Maths. Pures Appl., T. 65, 1987, pp. 423-468. | MR 881690 | Zbl 0601.35070

[12] D. Serre, Oscillations non linéaires des systèmes hyperboliques. Méthodes et résultats qualitatifs, this issue. | Numdam | Zbl 0810.35060

[13] L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, in Heriot Watt Symposium, 1979, R. J. KNOPS Ed., Res. Notes in Math., Nonlinear Analysis and Mechanics, No. 4, Pitman. | MR 584398 | Zbl 0437.35004

[14] L. Tartar H-Measures, a New Approach for Studying Homogenization and Concentration Effects in Partial Differential Equations, Preprint.

[15] D. Wagner, Equivalence of the Euler and Lagrangian Equations of Gas Dynamics for Weak Solutions, J. Diff. Eqs., Vol. 68, 1987, pp. 118-136. | MR 885816 | Zbl 0647.76049

[16] L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, 1969. | MR 259704 | Zbl 0177.37801