@article{AIHPC_1990__7_5_477_0, author = {Coti Zelati, Vittorio}, title = {Periodic solutions for N-body type problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {7}, year = {1990}, pages = {477-492}, mrnumber = {1138534}, zbl = {0723.70010}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1990__7_5_477_0} }
Coti Zelati, Vittorio. Periodic solutions for N-body type problems. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) pp. 477-492. http://gdmltest.u-ga.fr/item/AIHPC_1990__7_5_477_0/
[1] ZELATI, Critical points with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl., Vol. 149, 1987, pp. 237-259. | MR 932787 | Zbl 0642.58017
and[2] Perturbation of Hamiltonian systems with Keplerian potentials, Math. Z., Vol. 201, 1989, pp. 227-242. | MR 997224 | Zbl 0653.34032
and ,[3] A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. | MR 987301 | Zbl 0681.70018
and ,[4] Solutions of the three-body problem via critical points at infinity, Preprint Univ. of Wisconsin-Madison, 1988.
and ,[5] A class of periodic solutions of the N-body problem, Celestial Mech., Vol. 46, 1989, pp. 177-186. | MR 1044425 | Zbl 0684.70006
,[6] Periodic solutions of dynamical systems with Newtonian-type potentials, Ann. Sci. Norm. Sup. Pisa, Vol. 15, 1988, pp. 467-494. | Numdam | MR 1015804 | Zbl 0692.34050
and ,[7] Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., Vol. 204, 1975, pp. 113-135. | MR 377983 | Zbl 0276.58005
,[8] Periodic solutions of a class of singular Hamiltonian systems, Nonlin. Anal. TMA, Vol. 12, 1988, pp. 259-269. | MR 928560 | Zbl 0648.34048
,[9] Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. | MR 467823 | Zbl 0358.70014
,