@article{AIHPC_1989__S6__283_0, author = {Frankowska, Halina}, title = {High order inverse function theorems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {S6}, year = {1989}, pages = {283-303}, mrnumber = {1019118}, zbl = {0701.49040}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1989__S6__283_0} }
Frankowska, H. High order inverse function theorems. Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989) pp. 283-303. http://gdmltest.u-ga.fr/item/AIHPC_1989__S6__283_0/
[1] Comportement lipschitzien des solutions de problèmes de minimisation convexes. CRAS, Paris, 295, 235-238 | MR 681586 | Zbl 0503.49022
(1982)[2] Lipschitz behavior of solutions to convex minimization problems. Math. Operations Research, 8, 87-111 | MR 736641 | Zbl 0539.90085
(1984)[3] DIFFERENTIAL INCLUSIONS. Springer Verlag | Zbl 0538.34007
& (1984)[4] APPLIED NONLINEAR ANALYSIS. Wiley-Interscience | Zbl 0641.47066
& (1984)[5] On the inverse function theorem. J. Math. Pures & Appliquées, 66, 71-89 | Zbl 0643.46033
& (1987)[6] On the inversion of some differential mappings with singularities between Banach spaces. Ann. Math. Pure Appl., 93, 231-247 | Zbl 0288.35020
& (1973)[7] INTRODUCTION TO BANACH SPACES AND THEIR GEOMETRY. North Holland, Math. Study, 68 | MR 889253 | Zbl 0585.46009
(1985)[8] OPTIMIZATION AND NONSMOOTH ANALYSIS. Wiley-Interscience | MR 709590 | Zbl 0582.49001
(1983)[9] Ljusternik's theorem and the theory of extrema. Uspekhi Mat. Nauk, 35:6, 11-46 / Russian Math Surveys, 35:6, 11-51 | Zbl 0479.49015
, & (1980)[10] Nonconvex minimization problems. Bull. Am. Math. Soc., 1, 443-474 | MR 526967 | Zbl 0441.49011
(1979)[11] A unified theory of necessary conditions for nonlinear nonconvex systems. Appl. Math. & Opt., 2, 141-184 | Zbl 0616.49015
(1987)[12] Necessary conditions for infinite dimensional control problems. | Zbl 0737.49017
& (to appear)[13] Théorème d'application ouverte pour des correspondances. CRAS, Paris 302, 559-562 | MR 845648 | Zbl 0588.49008
(1986)[14] An open mapping principle for set-valued maps. J. Math. Analysis & Appl., 127, 172-180 | Zbl 0643.46034
(1987)[15] Local controllability and infinitesimal generators of semigroups of set-valued maps. SIAM J. Control & Optimization, 25, 412- 432 | Zbl 0625.49015
(1987)[16] Théorèmes d'application ouverte et de fonction inverse. CRAS, Paris, 305, 773-776 | MR 921132 | Zbl 0635.46041
(1987)[17] Local controllability of control systems with feedbacks. J. Opt. Th. & Appl., n° 2, (to appear) | Zbl 0633.93013
(1989)[18] On the linearization of nonlinear control systems and exact reachability. Proceedings of IFIP Conference on Optimal Control of Systems Governed by Partial Differential Equations, Santiago de Compostela, Spain, July 6-9, 1987, Springer Verlag | MR 987973 | Zbl 0677.93042
(to appear)[19] Some Inverse Mapping Theorems. (to appear) | Numdam | Zbl 0727.26014
[20] Some mapping theorem. Duke Math. J., 17, 111-114 | MR 35398 | Zbl 0037.20401
(1950)[21] On the local surjection property. J. Nonlinear Analysis, 11, 565-592 | MR 886649 | Zbl 0642.49010
(1987)[22] THEORY OF EXTREMAL PROBLEMS. Nauka, Moskow
& (1974)[23] Conditional extrema of functionals. Mat. Sb., 41, 390-401
(1934)[24] The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Analysis & Appl., 17, 37-47 | Zbl 0149.16701
, & (1967)[25] Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numerical Analysis, 13, 497-513 | MR 410522 | Zbl 0347.90050
(1976)[26] Lipschitzian stability in optimization: the role of nonsmooth analysis. IIASA WP-8646 | MR 822004 | Zbl 0586.49012
(1986)[27] Second-order optimality conditions in nonlinear programming obtained by way of pseudo-derivatives. (preprint)
(1987)