@article{AIHPC_1989__S6__185_0, author = {Clarke, Frank H. and Loewen, Philip D.}, title = {Variational problems with lipschitzian minimizers}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {S6}, year = {1989}, pages = {185-209}, mrnumber = {1019114}, zbl = {0677.49006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1989__S6__185_0} }
Clarke, F. H.; Loewen, P. D. Variational problems with lipschitzian minimizers. Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989) pp. 185-209. http://gdmltest.u-ga.fr/item/AIHPC_1989__S6__185_0/
[1] Optimization-Theory and Applications. Springer-Verlag, New York, 1983. | MR 688142 | Zbl 0506.49001
,[2] The Euler-Lagrange differential inclusion. J. Diff. Equations 19(1975), pp. 80-90. | MR 388196 | Zbl 0323.49021
,[3] Optimization and Nonsmooth Analysis. Wiley Interscience, New York, 1983. | MR 709590 | Zbl 0582.49001
,[4] Hamiltonian analysis of the generalized problem of Bolza. Trans. AMS 301 (1987), pp. 385-400. | MR 879580 | Zbl 0621.49011
,[5] An intermediate existence theory in the calculus of variations. Technical report CRM-1418, C. R. M., Univ. de Montreal, C. P. 6128- A, Montreal, Canada, H3C 3J7.
and ,[6] On the conditions under which the Euler equation or the maximum principle hold. Appl. Math. Optim. 12 (1984), pp. 73-79. | MR 756513 | Zbl 0559.49012
and ,[7] Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Amer. Math. Soc. 289 (1985), pp. 73-98. | MR 779053 | Zbl 0563.49009
and ,[8] Existence and regularity in the small in the calculus of variations. J. Diff. Equations 59 (1985), pp. 336-354. | MR 807852 | Zbl 0727.49003
and ,[9] Sure une méthode directe du calcul des variations. Rend. Circ. Mat. Palermo 39(1915), pp. 233-264; also in Opere Scelte (vol. 2), Cremonese, Rome, 1961. | JFM 45.0615.02
,[10] Fondamenti di Calcolo delle Variazioni (2 vols.). Zanichelli, Bologna, 1921, 1923. | JFM 48.0581.09
,