@article{AIHPC_1988__5_3_211_0, author = {Toland, J. F.}, title = {Periodic solutions for a class of Lorenz-lagrangian systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {5}, year = {1988}, pages = {211-220}, mrnumber = {954471}, zbl = {0657.34042}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1988__5_3_211_0} }
Toland, J. F. Periodic solutions for a class of Lorenz-lagrangian systems. Annales de l'I.H.P. Analyse non linéaire, Tome 5 (1988) pp. 211-220. http://gdmltest.u-ga.fr/item/AIHPC_1988__5_3_211_0/
[1] On the Existence of Homoclinic Heteroclinic and Periodic Solutions for a Class of Indefinite Hamiltonian Systems, Math. Annolen, Vol. 268, 1984, pp. 387-403. | MR 751737 | Zbl 0569.70017
and ,[2] Calculus of Variations in the Large and Classical Mechanics, Russ. Math. Surveys, Vol. 40, 1985, pp. 37-71. | MR 786086 | Zbl 0579.70020
,[3] Hamiltonian Systems Withmonotone Trajectories, Proc. Centre Math. Anal., Vol. 8, 1964, pp. 51-63. | Zbl 0622.58013
,[4] An Index for Hamiltonian Systems with a Natural Order Structure. In Nonlinear Functional Analysis and its Applications, D. Riedel, 1986, pp. 147-161. | MR 852574 | Zbl 0606.58023
,