Periodic solutions for a class of Lorenz-lagrangian systems
Toland, J. F.
Annales de l'I.H.P. Analyse non linéaire, Tome 5 (1988), p. 211-220 / Harvested from Numdam
Publié le : 1988-01-01
@article{AIHPC_1988__5_3_211_0,
     author = {Toland, J. F.},
     title = {Periodic solutions for a class of Lorenz-lagrangian systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {5},
     year = {1988},
     pages = {211-220},
     mrnumber = {954471},
     zbl = {0657.34042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1988__5_3_211_0}
}
Toland, J. F. Periodic solutions for a class of Lorenz-lagrangian systems. Annales de l'I.H.P. Analyse non linéaire, Tome 5 (1988) pp. 211-220. http://gdmltest.u-ga.fr/item/AIHPC_1988__5_3_211_0/

[1] H. Hofer and J. Toland, On the Existence of Homoclinic Heteroclinic and Periodic Solutions for a Class of Indefinite Hamiltonian Systems, Math. Annolen, Vol. 268, 1984, pp. 387-403. | MR 751737 | Zbl 0569.70017

[2] V.V. Kozlov, Calculus of Variations in the Large and Classical Mechanics, Russ. Math. Surveys, Vol. 40, 1985, pp. 37-71. | MR 786086 | Zbl 0579.70020

[3] J.F. Toland, Hamiltonian Systems Withmonotone Trajectories, Proc. Centre Math. Anal., Vol. 8, 1964, pp. 51-63. | Zbl 0622.58013

[4] J.F. Toland, An Index for Hamiltonian Systems with a Natural Order Structure. In Nonlinear Functional Analysis and its Applications, D. Riedel, 1986, pp. 147-161. | MR 852574 | Zbl 0606.58023