Quantum nonlinear Schrödinger equation. I. Intertwining operators
Gutkin, Eugène
Annales de l'I.H.P. Analyse non linéaire, Tome 3 (1986), p. 285-314 / Harvested from Numdam
Publié le : 1986-01-01
@article{AIHPC_1986__3_4_285_0,
     author = {Gutkin, Eug\`ene},
     title = {Quantum nonlinear Schr\"odinger equation. I. Intertwining operators},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {3},
     year = {1986},
     pages = {285-314},
     mrnumber = {853384},
     zbl = {0614.35086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_1986__3_4_285_0}
}
Gutkin, Eugène. Quantum nonlinear Schrödinger equation. I. Intertwining operators. Annales de l'I.H.P. Analyse non linéaire, Tome 3 (1986) pp. 285-314. http://gdmltest.u-ga.fr/item/AIHPC_1986__3_4_285_0/

[1] F.A. Berezin, Method of second quantization, Moscow, 1965. | MR 202392 | Zbl 0131.44805

[2] B. Davies, Second quantization of the nonlinear Schrödinger equation, J. Phys. A., t. 14, 1981, p. 2631-2644. | MR 629319 | Zbl 0498.35032

[3] E. Gutkin, Integrable systems with delta-potential, Duke Math. J., t. 49, 1982, p. 1-21. | MR 650365 | Zbl 0517.35026

[4] E. Gutkin, Conservation laws for the nonlinear Schrödinger equation, Ann. Sci. de l'Inst. H. Poincaré, Anal. n. lin., t. 2-1, 1985, p. 67-74. | Numdam | MR 781592 | Zbl 0585.35080

[5] E. Gutkin, Propagation of chaos and the Hopf-Cole transformation, Adv. Appl. Math., 1985, n° 4. | MR 826591 | Zbl 0606.35041

[6] E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation, SIAM J. Appl. Math., t. 43, 1983, p. 971-980. | MR 709749 | Zbl 0554.35104

[7] E. Gutkin, Quantum nonlinear Schrödinger equation. II. Explicit solution, preprint. | MR 933972 | Zbl 0692.35089

[8] E. Lieb and W. Lieniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev., t. 130, 1963, p. 1605-1616. | MR 156630 | Zbl 0138.23001

[9] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer 1966. | MR 232968 | Zbl 0143.08502

[10] S. Oxford, The Hamiltonian of the quantized nonlinear Schrödinger equation, Ph. D. Thesis, UCLA, 1979.

[11] M. Reed and B. Simon, Methods of modern mathematical physics, II and III. Academic press, 1979. | MR 751959

[12] H.B. Thacker, The quantum inverse method and Green's functions for completely integrable field theories, in Integrable Quantum Field Theories, LN in Physics, t. 151, Springer 1981.

[13] C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett., t. 19, 1967, p. 1312-1314. | MR 261870 | Zbl 0152.46301

[14] V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Phys. JETP, t. 34, 1972, p. 62-69. | MR 406174

[15] P.P. Kulish and E.K. Sklyanin, Quantum spectral transform method. Recent developments, in Integrable Quantum Field Theories, LN in Physics, t. 151, Springer 1981. | MR 671263 | Zbl 0734.35071

[16] L.D. Faddeev, Quantum completely integrable models in field theory, Soviet Sci. Rev. C, t. 1, 1980, p. 107-156. | Zbl 0569.35064

[17] V.E. Zakharov and S.V. Manakov, On the complete integrability of a nonlinear Schrödinger equation, Theor. Math. Phys., t. 19, 1975, p. 551-559. | Zbl 0298.35016