Vers une notion de dérivation fonctionnelle causale
Fliess, Michel
Annales de l'I.H.P. Analyse non linéaire, Tome 3 (1986), p. 67-76 / Harvested from Numdam
Publié le : 1986-01-01
@article{AIHPC_1986__3_1_67_0,
     author = {Fliess, Michel},
     title = {Vers une notion de d\'erivation fonctionnelle causale},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {3},
     year = {1986},
     pages = {67-76},
     mrnumber = {837731},
     zbl = {0602.93032},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIHPC_1986__3_1_67_0}
}
Fliess, Michel. Vers une notion de dérivation fonctionnelle causale. Annales de l'I.H.P. Analyse non linéaire, Tome 3 (1986) pp. 67-76. http://gdmltest.u-ga.fr/item/AIHPC_1986__3_1_67_0/

[1] J.F. Barrett, The use of functionals in the analysis of non-linear physical systems, J. Electronics Control, t. 15, 1963, p. 567-615.

[2] J. Berstel et C. Reutenauer, Les séries rationnelles et leurs langages, Masson, Paris, 1984. | MR 745968 | Zbl 0573.68037

[3] N. Bourbaki, Algèbre I (chap. 1 à 3), Hermann, Paris, 1970. | MR 274237 | Zbl 0211.02401

[4] K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math., t. 65, 1957, p. 163-178. | MR 85251 | Zbl 0077.25301

[5] K.-T. Chen, Algebraic paths, J. Algebra, t. 10, 1968, p. 8-36. | MR 229630 | Zbl 0204.33803

[6] K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc., t. 83, 1977, p. 831-879. | MR 454968 | Zbl 0389.58001

[7] W.N. Findley, J.-S. Lai et K. Onaran, Creep and Relaxation of Nonlinear Visco-elastic Materials, North-Holland, Amsterdam, 1976. | MR 431847 | Zbl 0345.73034

[8] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France, t. 109, 1981, p. 3-40. | Numdam | MR 613847 | Zbl 0476.93021

[9] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et series génératrices non commutatives, Inventiones Math., t. 71, 1983, p. 521-537. | MR 695904 | Zbl 0513.93014

[10] M. Fliess, On the concept of derivatives and Taylor expansions for nonlinear input-output systems, Proc. 22nd IEEE Conf. Decision Control, p. 643-646, San Antonio, TX, 1983.

[11] M. Fliess, M. Lamnabhi et F. Lamnabhi-Lagarrigue, An algebraic approach to nonlinear functional expansions, IEEE Trans. Circuits Systems, t. 30, 1983, p. 554-570. | MR 715510 | Zbl 0529.34002

[12] M. Fliess et F. Lamnabhi-Lagarrigue, Application of a new functional expansion to the cubic anharmonic oscillator, J. Math. Physics, t. 23, 1982, p. 495-502. | MR 649526

[13] M. Fliess et D. Normand-Cyrot, Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K. T. Chen, Séminaire de Probabilités XVI 1980/1981, J. Azéma et M. Yor eds., p. 257-267, Lect. Notes Math. 920, Springer-Verlag, Berlin, 1982. | Numdam | MR 658689 | Zbl 0495.60064

[14] F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie, Leipziger Ber., t. 58, 1906, p. 19-48. | JFM 37.0176.02

[15] W. Magnus, A. Karrass et D. Solitar, Combinatorial Group Theory, Interscience, New York, 1966.

[16] U. Oberst, Actions of formal groups on formal schemes. Application to control theory and combinatorics, Séminaire M.-P. Malliavin, Paris, 1983. | Zbl 0617.14029

[17] R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math., t. 68, 1958, p. 210-220. | MR 100011 | Zbl 0083.25401

[18] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958. | MR 96594 | Zbl 0078.00805

[19] G. Rosen, Formulations of Classical and Quantum Dynamical Theory, Academic Press, New York, 1969. | MR 273906 | Zbl 0195.28102

[20] G.-C. Rota, B. Sagan et P.R. Stein, A cyclic derivative in noncommutative algebra, J. Algebra, t. 64, 1980, p. 54-75. | MR 575782 | Zbl 0428.16036

[21] W.J. Rugh, Nonlinear System Theory, The Johns Hopkins University Press, Baltimore, 1981. | MR 713994 | Zbl 0666.93065

[22] J. Rzewuski, Field Theory, t. 2, Polish Scientific Publishers, Varsovie, et, Iliffe Books, Londres, 1969.

[23] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems, Wiley, New York, 1980. | MR 562917 | Zbl 0501.93002

[24] R. Siegmund-Schultze, Die Anfänge der Funktionalanalysis und ihr Platz im Umwälzungsprozess der Mathematik um 1900, Arch. History Exact Sc., t. 26, 1982, p. 13-71. | MR 664469 | Zbl 0514.46001

[25] M.E. Sweedler, Hopf Algebras, Benjamin, New York, 1968. | MR 252485 | Zbl 0194.32901

[26] V. Volterra, Leçons sur les fonctions de lignes, Gauthier-Villars, Paris, 1913.

[27] V. Volterra et J. Pérès, Théorie générale des fonctionnelles, t. 1, Gauthier-Villars, Paris. 1936. | JFM 62.0455.01 | Zbl 0015.30501