@article{AIHPC_1985__2_6_463_0, author = {Capozzi, A. and Fortunato, Donato and Palmieri, G.}, title = {An existence result for nonlinear elliptic problems involving critical Sobolev exponent}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {2}, year = {1985}, pages = {463-470}, mrnumber = {831041}, zbl = {0612.35053}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_1985__2_6_463_0} }
Capozzi, A.; Fortunato, D.; Palmieri, G. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Annales de l'I.H.P. Analyse non linéaire, Tome 2 (1985) pp. 463-470. http://gdmltest.u-ga.fr/item/AIHPC_1985__2_6_463_0/
[0] Dual variational methods in critical points theory and applications. J. Funct. Analysis, t. 14, 1973, p. 349-381. | MR 370183 | Zbl 0273.49063
, ,[1] Abstract critical point theorems and applications to some nonlinear problems with « strong resonance » at infinity. Journal of nonlinear Anal. T. M. A., t. 7, 1983, p. 981-1012. | MR 713209 | Zbl 0522.58012
, , ,[2] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., t. XXXVI, 1983, p. 437-477. | MR 709644 | Zbl 0541.35029
, ,[3] Multiplicity results for nonlinear elliptic equations involving critical Sobolev exponent, preprint. | MR 866840
, ,[4] Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré. Analyse non linéaire, t. 1, 1984, p. 341-350. | Numdam | MR 779872 | Zbl 0568.35039
, , ,[5] Problemi ellittici con termine non lineare a crescita critica, Proceedings of the meeting « Problemi differenziali e teoria dei punti critici ». Bari, marzo, 1984.
,[6] Eigenfunctions of the equation Δu + λf(u) = 0. Soviet Math. Doklady, t. 6, 1965, p. 1408-1411. | Zbl 0141.30202
,[7] A global compactness result for elliptic boundary value problems involving limiting non-linearities. Math. Z., t. 187, 1984, p. 511-517. | MR 760051 | Zbl 0535.35025
,