@article{AIHPC_1985__2_6_407_0,
author = {Hofer, Helmut},
title = {Lagrangian embeddings and critical point theory},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {2},
year = {1985},
pages = {407-462},
mrnumber = {831040},
zbl = {0591.58009},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_1985__2_6_407_0}
}
Hofer, Helmut. Lagrangian embeddings and critical point theory. Annales de l'I.H.P. Analyse non linéaire, Tome 2 (1985) pp. 407-462. http://gdmltest.u-ga.fr/item/AIHPC_1985__2_6_407_0/
[1] , Sobolev Spaces, Academic Press, New York, 1975. | MR 450957 | Zbl 0314.46030
[2] , Sur une propriété topologique des applications canoniques de la mécanique classique. C. R. Acad. Sc. Paris, t. 261, 1965, p. 3719-3722. | MR 193645 | Zbl 0134.42305
[3] and , Critical point theorems for indefinite functionals. Inv. Math., t. 52, 1979, p. 241-273. | MR 537061 | Zbl 0465.49006
[4] , On critical point theory for indefinite functionals in the presence of symmetries. Trans. A. M. S., t. 274, 1982, p. 533-572. | MR 675067 | Zbl 0504.58014
[5] , Quelques questions de géométrie symplectique d'après, entre autres, Poincaré, Arnold, Conley and Zehnder, Séminaire Bourbaki 1982/1983, Asté- risque 105-106, 1983, p. 231-249. | Numdam | MR 728991 | Zbl 0525.53049
[6] and , Quelques résultats globaux en géométrie symplectique (to appear). | MR 753864
[7] and , The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold. Inv. Math., t. 73, 1983, p. 33-49. | MR 707347 | Zbl 0516.58017
[8] , The fixed point transfer of fibre-preserving maps. Math. Z., t. 148, 1976, p. 215-244. | MR 433440 | Zbl 0329.55007
[9] , Geometry of manifolds of maps. J. Diff. Geom., t. 1, 1967, p. 165-194. | MR 226681 | Zbl 0163.43901
[10] and , Generalised cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Inv. Math., t. 45, 1978, p. 139-174. | MR 478189 | Zbl 0403.57001
[11] , Proof of the Arnold conjecture for surfaces and generalisations for certain Kähler manifolds (to appear). | MR 835793 | Zbl 0607.58016
[12] and , A symplectic fixed point theorem for complex projective spaces (to appear). | MR 766969 | Zbl 0566.58013
[13] , Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. | MR 445088 | Zbl 0224.35002
[14] , A new proof for a result of Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface. Boll. U. M. I., t. 16, 1-B, 1982, p. 931-942. | MR 683483 | Zbl 0541.70032
[15] , On strongly indefinite functionals with applications. Trans. A. M. S., t. 275, 1, 1983, p. 185-214. | MR 678344 | Zbl 0524.58010
[16] , Lectures on closed geodesics. Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, Heidelberg, New York, t. 230, 1978. | MR 478069 | Zbl 0397.58018
[17] , Riemannian Geometry, de Gruyter Studies in Mathematics 1, Walter de Gruyter, Berlin, New York, 1982. | MR 666697 | Zbl 0495.53036
[18] , Lagrangian submanifolds and Hamiltonian systems. Ann. Math., t. 98, 1973, p. 377-410. | MR 331428 | Zbl 0271.58008
[19] , C0-perturbation theorems for symplectic fixed points and Lagrangian intersections (to appear).
[20] , Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 31, 1978, p. 157-184. | MR 467823 | Zbl 0358.70014
[21] , Une théorie de Morse pour les systèmes hamiltoniens convex. Ann. IHP. Analyse non linéaire, t. 1, 1984, p. 19-78. | Numdam | MR 738494 | Zbl 0537.58018
[22] , A variant of Luisternik-Schnirelman theory, Indiana University Math. J., 22 No., t. 1, 1972, p. 65-74. | MR 296777 | Zbl 0228.58006