Nous établissons une formule asymptotique exacte pour la variation quadratique de certains processus de sommes partielles. Soit une suite de variables indépendantes et identiquement distribuées de moyenne nulle et de variance finie satisfaisant une condition de moments pour un . Soit l’ensemble de toutes les partitions possibles de l’intervalle en sous-intervalles, alors nous montrons que presque sûrement . Ceci peut être interprété comme une amélioration de la loi du logarithme itéré et précise les résultats de J. Qian sur les sommes partielles et les processus empiriques. Quand , nous obtenons une version plus faible, en probabilité, de ce résultat.
We establish an exact asymptotic formula for the square variation of certain partial sum processes. Let be a sequence of independent, identically distributed mean zero random variables with finite variance and satisfying a moment condition for some . If we let denote the set of all possible partitions of the interval into subintervals, then we have that holds almost surely. This can be viewed as a variational strengthening of the law of the iterated logarithm and refines results of J. Qian on partial sum and empirical processes. When , we obtain a weaker ‘in probability’ version of the result.
@article{AIHPB_2015__51_4_1597_0, author = {Lewko, Allison and Lewko, Mark}, title = {An exact asymptotic for the square variation of partial sum processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {1597-1619}, doi = {10.1214/14-AIHP617}, mrnumber = {3414459}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_4_1597_0} }
Lewko, Allison; Lewko, Mark. An exact asymptotic for the square variation of partial sum processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 1597-1619. doi : 10.1214/14-AIHP617. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_4_1597_0/
[1] -variation de fonctions aléatoires. II. Processus à accroissements indépendants. In Séminaire de Probabilités VI (Univ. Strasbourg, Année Universitaire 1970–1971). Lecture Notes in Math. 258 64–71. Springer, Berlin, 1972. | Numdam | MR 373020 | Zbl 0273.60051
.[2] Probability Theory: Independence, Interchangeability, Martingales, 3rd edition. Springer, Berlin, 1997. | MR 1476912 | Zbl 0399.60001
and .[3] Stochastic Processes. Wiley, New York, 1953. | MR 58896 | Zbl 0696.60003
.[4] Empirical processes and -variation. In Festschrift for Lucien Le Cam 219–233. Springer, Berlin, 1997. | MR 1462947 | Zbl 0914.62037
.[5] On some classical results in probability theory. Sankhyā Ser. A 47 (1985) 215–221. | MR 844022 | Zbl 0581.60019
.[6] Advanced Probability Theory, 2nd edition. Dekker, New York, 1995. | MR 1350792 | Zbl 0841.60001
.[7] On the law of the iterated logarithm. Amer. J. Math. 63 (1941) 169–176. | JFM 67.0460.03 | MR 3497
and .[8] Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (301) (1963) 13–30. | MR 144363 | Zbl 0127.10602
.[9] Variation inequalities for the Fejér and Poisson kernels. Trans. Amer. Math. Soc. 356 (11) (2004) 4493–4518. | MR 2067131 | Zbl 1065.42006
and .[10] Estimates for the square variation of partial sums of Fourier series and their rearrangements. J. Funct. Anal. 262 (6) (2012) 2561–2607. | MR 2885959 | Zbl 1239.42027
and .[11] Orthonormal systems in linear spans. Anal. PDE 7 (2014) 97–115. | MR 3219501 | Zbl 1298.42032
and .[12] A variational Barban–Davenport–Halberstam theorem. J. Number Theory 132 (9) (2012) 2020–2045. | MR 2925860 | Zbl 06052917
and .[13] The square variation of rearranged Fourier series. Amer. J. Math. To appear, 2015. Available at arXiv:1212.1988. | MR 3405868
and .[14] The -variation of partial sum processes and the empirical process. Ann. Probab. 26 (3) (1998) 1370–1383. | MR 1640349 | Zbl 0927.62049
.[15] Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques and Applications 31. Springer, Berlin, 1999. | Zbl 0944.60008
.[16] On the subspaces of () spanned by sequences of independent random variables. Israel J. Math. 8 (1970) 273–303. | MR 271721 | Zbl 0213.19303
.[17] Exact asymptotic estimates of Brownian path variation. Duke Math. J. 39 (1972) 219–241. | MR 295434 | Zbl 0241.60069
.